WASTE TO ENERGY CONVERSION

Course Objective:

- To introduce students to the different types of waste and their characterization.
- To teach students the various methods of converting waste to energy.
- To develop students' understanding of the principles behind the conversion processes.
- To equip students with the knowledge and skills to design and implement waste-toenergy projects.

Course Outcome:

- CO1. Student will be able to characterize different types of waste and understand the principles behind waste-to-energy conversion processes.
- CO2. Analyze the suitability of different waste-to-energy conversion methods for specific waste types.
- CO3. Design and implement waste-to-energy projects.
- CO4. Apply practical experience in waste-to-energy conversion techniques.

Syllabus:

Module 1 – Wastes: Introduction and characterization of wastes, definition of waste, types of waste, characteristics of waste, waste disposal methods.

Module 2 – Energy Production from Wastes - I: Energy production through incineration, gasification, pyrolysis and syngas utilization. Incineration: principle, advantages, and disadvantages; Gasification: principle, advantages, and disadvantages; Pyrolysis: principle, advantages, and disadvantages, and disadvantages.

Module 3 – Energy Production from Wastes - II: Energy production through anaerobic digestion, fermentation, transesterification and introduction to microbial fuel cells. Anaerobic digestion: principle, advantages, and disadvantages; Fermentation: principle, advantages, and disadvantages; Introduction to microbial fuel cells: principle, advantages, and disadvantages.

Module 4 – Energy Production from Algae: Cultivation of algal biomass from wastewater and energy production from algae. Algae cultivation: principle, advantages, and disadvantages; Energy production from algae: principle, advantages, and disadvantages; Applications of algae in waste management.

Module 5 - Energy Production from Solid Wastes: Densification of solids, efficiency improvement of power plant and energy production from waste plastics. Densification of

solids: principle, advantages, and disadvantages; Efficiency improvement of power plants: principle, advantages, and disadvantages; Energy production from waste plastics: principle, advantages, and disadvantages; Applications of waste plastics in energy generation.

References Books:

- 1. Rogoff, M. J. and Screve, F., "Waste-to-Energy: Technologies and Project Implementation", Elsevier Store, 2011.
- 2. Young G. C., "Municipal Solid Waste to Energy Conversion processes", John Wiley and Sons, 2010.
- 3. Harker, J. H. and Backhusrt, J. R., "Fuel and Energy", Academic Press Inc, 1981.
- 4. EL-Halwagi, M. M., "Biogas Technology Transfer and Diffusion", Elsevier Applied Science, 1986.
- 5. Hall, D.O. and Overeed, R.P.," Biomass Renewable Energy", John Willy and Sons. Mondal, P. and Dalai, A. K. eds., 2017. Sustainable Utilization of Natural Resources. CRC Press.

Scheme of Evaluation:

Internal Assessment		End-semester Assessment	
Mid-semester exam	30 Marks	End-semester	50 Marks
Assignment	10 Marks	examination	
Seminar	10 Marks		
Sub Total	50 Marks	50 Marks	
Grand Total		100 Marks	