## Course objective:

Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to otherwise intractable mathematical problems.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

| PSO1 | Apply the knowledge of mathematical concepts in interdisciplinary fields. |
| :--- | :--- |
| PSO2 | Understand the nature of abstract mathematics and explore the concepts in further <br> details. |
| PSO3 | Model the real-world problems in to mathematical equations and draw the inferences <br> by finding appropriate solutions. |
| PSO4 | Identify challenging problems in mathematics and find appropriate solutions. |
| PSO5 | Pursue research in challenging areas of pure/applied mathematics. |
| PSO6 | Employ confidently the knowledge of mathematical software and tools for treating <br> the complex mathematical problems and scientific investigations. |
| PSO7 | Continue to acquire mathematical knowledge and skills appropriate to professional <br> activities and demonstrate highest standards of ethical issues in mathematics. |
| PSO8 | Comprehend and write effective reports and design documentation related to <br> mathematical research and literature, make effective presentations. |
| PSO9 | Qualify national level tests like NET/GATE etc. |
| PSO10 | Effectively communicate and explore ideas of mathematics for propagation of <br> knowledge and popularization of mathematics in society. |

## Unit I

## Approximation and Errors in computing

Approximation and Errors in computing: Introduction, Significant digits, Inherent error, Rounding error, Truncation error, Absolute and relative error, Error propagation.

## Unit II

## Roots of Non-Linear Equations and solution of system of Linear Equations

Roots of Non-Linear Equations and solution of system of Linear Equations: Bisection method, False position Method, Newton-Raphson Method, fixed - point method, Muller's
method for complex and multiple roots, convergence of Bisection, Newton- Raphson's and False position methods, Gauss Elimination method by pivoting, Gauss - Jordan method, Gauss - Seidel method, Relaxation method, convergence of iteration methods.

## Unit III

## Difference Operators \& Interpolation

Difference Operators \& Interpolation: Forward and Backward difference operators and table, Interpolation with equidistant point, Lagrange Interpolation Polynomial, Newton Interpolating Polynomial using divided Difference Table.

## Unit IV

## Numerical Differentiation and Integration

Numerical Differentiation and Integration: Differentiating continuous functions, differentiating tabulated functions, Higher order derivatives, Richardson's Extrapolation, Newton - cotes integration formula, Trapezoidal rule, Simpson's rule, Boole's rule and Weddle's rule, Romberg's Integration.

## Text Books

B.S. Grewal, "Numerical Methods in Engineering \& Science", Khanna Publication, Ed. 9th.
E. Balagurusamy , "Numerical Method", Tata McGraw Hill Publication.
S.S. Sastry, "Introductory Methods of Numerical Analysis", PHI learning Pvt. Ltd.

## Evaluation Pattern:

| Internal Assessment: | Midterm exam: $1 \times 30$ | $=30$ |
| :---: | :--- | :--- |
|  | Quizzes, assignments, etc: | $=\underline{20}$ |

$=\underline{50}$

