Fractional Calculus: Study of basic functions - Gamma function, Mittag-Leffler function, Hypergeometric function, fractional calculus a generalization of integer order calculus.

Fractional derivatives and Integrals: Definition of fractional derivatives and integrals-Riemann-Liouville, Caputo and Grunwald-Letnikov, and their relations, properties of fractional derivatives, computation of fractional derivatives for some basic functions like constant, exponential, log, sine, cosine, Laplace transform of Riemann-Liouville, Caputo and Grunwald-Letnikovderivatives. Properties of Differintegration : Linearity, differintegration term by term, homogeneity, scale change Leibniz's rule, chain rule.

Differintegration of simple functions: Differintegrable functions-unit function, zero function, function of (x-a), function $(x-a)^{p}$, Binomial function, exponential functions, Heaviside and Dirac functions.

Fractional Differential Equation (FDE): Solving homogeneous FDEs- direct approach, Laplace transform approach, linear independent solutions, solving fractional integral equations, short memory principle, law of irreversibility nonlocality.
Applications of Fractional Calculus: Able's fractional integral equation- the Tautochrone problem, fractional damped motion, semi-infinite line in circuits -semi-differentiator circuit.

TEXT BOOKS/ REFERENCES:

1. Shantanu Das, "Functional Fractional Calculus", Springer-Verlag Berlin Heidelberg, 2011.
2. I. Podlubny, "Fractional Differential Equations", Academic Press, USA, 1999.
3. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley \& Sons, USA, 1993.
4. K. B. Oldham and J. Spanier, "The Fractional Calculus", Dover Publications, USA, 2006.
