Course Description and Objectives:

To provide concepts on the environmental sample preparation, detection and analysis of contaminants and to further characterize the material for Environmental applications.

Learning objectives:

1. To understand and apply the environmental sample preparation, detection and analysis of contaminants
2. To understand the principles and operation of a range of advanced techniques used in characterization of various materials and compounds.
3. To apply appropriate characterization techniques for microstructure examination at different magnification level for materials and water analysis.
4. To analyse the data and results obtained from advanced characterization techniques.

Pedagogy: Conceptualising, applying & analysing

Syllabus:

Pollutants in the environment and their sources; general classifications of pollutants and their chemical structures, properties and toxicity; units of measurement errors in quantitative analysis, precision and accuracy in measurement, statistics in microanalysis, control charts, and detection limit

Environmental sample Preparation techniques and methods. Sample collection, Sample extraction, preservation and analysis of the data.

Sample Quantification methods: Wet methods: Titrimetric and colorimetric procedures, Beers law and spectroscopic methods; Gas chromatography: Principles of chromatography; peaks separation; quantification methods, external and internal standard methods; High performance liquid chromatography -ion chromatography. Mass spectrometry: Interpretation of mass spectra, basic GC/MS instrumentation, Atomic spectroscopy: flame and furnace atomic absorption spectroscopy, inductively coupled plasma emission spectroscopy

Term projects with real time case studies: Sample extraction and analysis for real time samples

References:

Course Outcomes:
1. Understand and apply the environmental sample preparation, detection and analysis of contaminants.

2. Understand the principles and operation of a range of advanced techniques used in characterization of various materials and compounds.

3. Apply appropriate characterization techniques for microstructure examination at different magnification level for materials and water analysis.

4. Analyse the data and results obtained from advanced characterization techniques.

Evaluation Criteria

1. Midterm - 30%
2. Continuous Assessment: 30%
3. End semester exam: 40%

Employability: Design Consultancies