Program Description

Evolution of healthy Smart City and Smart Community based research has increased the demand for spatial assessment and earth system observations. These needs are further enhanced due to climate change impacts. Domain knowledge about the monitoring phenomenon plays a key role in designing systems that minimize the impact of natural hazards and reducing disaster risk. To achieve this we developed a multidisciplinary curriculum that introduces a wide spectrum of geospatial data analysis for multi-hazard risk assessment and disaster risk reduction. This program aims to provide the students with an opportunity to acquire detailed systematic knowledge and critical understanding of spatial environment related processes. The program also introduces state of the art technologies for data collection and analysis, as well as the ability to independently develop innovative solutions to complex problems in the areas of natural and man-made environment. The students will learn to become a valuable part in the national and global efforts in improved understanding of climate change mitigation and adaptation, geohazards evaluation, disaster risk reduction, disaster preparedness, Smart City and environmental planning and sustainable development, etc.

Programme Outcomes (PO)

PO1: An ability to independently carry out research/investigation and develop to solve practical problems

PO2: An Ability to write and present a substantial technical report / document

PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than requirements in appropriate bachelor program

PO4 Understanding of how the basic theories can be applied to solve practical problems.

PO5 Ability to bridge the gap from research to community needs.

Programme Specific Outcomes (PSO)

PSO1: Course aims to develop a critical understanding of spatial planning based on academic discourses, the international development agenda and candidates’ own experiences

PSO2: Mastering GIS and remote sensing based software packages and other technologies to analyse and solve earth science related resource utilisation and environmental issues.

PSO3: Understanding the earth system processes, problems and solutions.

PSO4: Mathematical and statistical description of earth observations.

PSO5: In a digital workflow environment, one will learn to combine remote sensing data with laboratory and field measurements, and to extract information from these data and gain insight to analyze, predict and monitor for sustainable applications.
CURRICULUM
First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Type</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>23MA603</td>
<td>FC</td>
<td>Foundations of Mathematics</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>23GE601</td>
<td>SC</td>
<td>Introduction to Earth System</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>23GE602</td>
<td>SC</td>
<td>Fundamentals of GIS and geostatistics</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>23GE603</td>
<td>SC</td>
<td>Principles of remote sensing</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>23GE604</td>
<td>SC</td>
<td>Geodetic surveying and monitoring methods</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>23GE681</td>
<td>FC</td>
<td>Advanced computer programming</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22AVP103</td>
<td></td>
<td>Mastery Over Mind</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>22ADM501</td>
<td></td>
<td>Glimpses of Indian Culture</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>P/F</td>
</tr>
<tr>
<td>23HU601</td>
<td>HU</td>
<td>Career Competency I*</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

*Non-credit course

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Type</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>23GE611</td>
<td>SC</td>
<td>Advanced Remote Sensing</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>23GE612</td>
<td>SC</td>
<td>Advanced GIS & geospatial modelling</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>23GE613</td>
<td>FC</td>
<td>Applied machine learning</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>23GE614</td>
<td>FC</td>
<td>Geotechnical and IoT monitoring methods</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>23RM703</td>
<td>SC</td>
<td>Research Methodology</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>Elective I</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>23GE682</td>
<td>P</td>
<td>Live-in-Labs I</td>
<td></td>
<td></td>
<td></td>
<td>P/F</td>
</tr>
<tr>
<td>23HU611</td>
<td>HU</td>
<td>Career Competency II</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Credits

20
Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Type</th>
<th>Course</th>
<th>L T P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>Elective II</td>
<td>2 0 1</td>
<td>3</td>
</tr>
<tr>
<td>23GE781</td>
<td>P</td>
<td>Live-in-Labs II</td>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>23GE798</td>
<td>P</td>
<td>Dissertation- Phase I</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credits</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Type</th>
<th>Course</th>
<th>L T P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>23GE782</td>
<td>P</td>
<td>Live-in-Labs III</td>
<td>0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>23GE799</td>
<td>P</td>
<td>Dissertation- Phase II</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credits</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Total Credits - 70
LIST OF COURSES

Foundation Core

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Type</th>
<th>Course</th>
<th>L T P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>23MA603</td>
<td>FC</td>
<td>Foundations of Mathematics</td>
<td>2 1 0</td>
<td>3</td>
</tr>
<tr>
<td>23GE602</td>
<td>FC</td>
<td>Fundamentals of GIS and geostatistics</td>
<td>3 0 1</td>
<td>4</td>
</tr>
<tr>
<td>23GE681</td>
<td>FC</td>
<td>Advanced computer programming</td>
<td>0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>23GE613</td>
<td>FC</td>
<td>Applied Machine Learning</td>
<td>3 0 1</td>
<td>4</td>
</tr>
<tr>
<td>23GE614</td>
<td>FC</td>
<td>Geotechnical and IoT monitoring methods</td>
<td>2 0 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Subject Core

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Type</th>
<th>Course</th>
<th>L T P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>23GE601</td>
<td>SC</td>
<td>Introduction to Earth System</td>
<td>3 0 1</td>
<td>4</td>
</tr>
<tr>
<td>23GE603</td>
<td>SC</td>
<td>Principles of Remote Sensing</td>
<td>2 0 1</td>
<td>3</td>
</tr>
<tr>
<td>23GE611</td>
<td>SC</td>
<td>Advanced Remote Sensing</td>
<td>3 0 1</td>
<td>4</td>
</tr>
<tr>
<td>23GE612</td>
<td>SC</td>
<td>Advanced GIS & geospatial modelling</td>
<td>2 0 1</td>
<td>3</td>
</tr>
<tr>
<td>23GE604</td>
<td>SC</td>
<td>Geodetic surveying and monitoring methods</td>
<td>2 0 1</td>
<td>3</td>
</tr>
<tr>
<td>23RM703</td>
<td>SC</td>
<td>Research Methodology</td>
<td>2 0 0</td>
<td>2</td>
</tr>
</tbody>
</table>
Elective Courses

<table>
<thead>
<tr>
<th>Elective I</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>23GE731 Climate Change and Sustainability: A Modelling Perspective</td>
<td>201</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23GE732 Geoelectrical Characterisation And Monitoring Methods</td>
<td>201</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23GE733 Glaciology and Associated hazards</td>
<td>201</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23GE734 Smart cities and urban planning</td>
<td>201</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective II</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>23GE741 Introduction to Deep Learning</td>
<td>201</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23GE742 Environmental Geology and Geohazards</td>
<td>201</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23GE743 Sustainable development - Frameworks & Solutions</td>
<td>201</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23GE744 Vulnerability Assessment & Disaster Risk Reduction</td>
<td>201</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Syllabus
(Syllabus for the three subjects will be added later)

23MA603 FOUNDATIONS OF MATHEMATICS 2-1-0-3

Course Outcomes

CO1: Understand the concepts of linearity, vector spaces and subspaces, inner products, orthogonality and bases
CO2: understand geometry of linear systems of equations, kernel and range of a matrix
CO3: understand representations of linear maps, diagonalization and singular value decomposition
CO4: Understand the description and quantification of randomness in experiments. Learn to compute probabilities from such models.
CO5: Learn to use discrete and continuous probability distributions. Train the associated computations of descriptors including mean, variance and of event probabilities.
CO6: Understand the concepts of independence, conditional distributions, covariance and correlation.

Part I: Linear Algebra

Determinants- Row Reduction and Cofactor Expansions, Row picture, Column picture, Vector Spaces- Euclidean space, General (real) Vector Spaces, Subspaces, Linear Independence, Dimension, Row, Column and Null spaces.

Inner products: Norms, Orthogonal Bases and Gram-Schmidt Orthogonalization; Matrix Multiplication Problems, Matrix Analysis, Gauss Elimination Technique, Diagonalization of a Matrix, Singular value decomposition, Dimensionality Reduction, Principal Component Analysis.

Linear Transformations: Kernel and Range, Inverse Transformations, Matrices of Linear Transformations, Change of Basis, Similarity; Orthogonalization and Least Squares, Eigenvalues and Eigenvectors,

Iterative methods for linear systems

Skills Acquired: Mathematical representation of physical systems in array & equations

TEXT BOOKS/REFERENCES:

Further References

Course Outcomes:

CO1: Explain basic Geological concepts and identify Geomorphological and Geological phenomena
CO2: Apply the concepts of regional development and planning
CO3: Analyze the driving forces behind atmospheric and oceanic circulation systems
CO4: Apply fundamental physical principles in understanding weather and climate processes
CO5: Describe the components of the ecosystem and their interconnections

State of the atmosphere; Atmospheric composition, structure, Vertical thermal structure of the atmosphere; global wind patterns; Hydrostatic equilibrium; Weather phenomena – Wind, precipitation, Surface weather and vertical structure; Convection, lapse rate, concept of air parcel; atmospheric stability; saturation; lifting condensation level; clouds; Introduction to atmospheric dynamics - equations of motion; atmospheric boundary layer. global hydrologic cycle. Ocean : Distribution of temperature, salinity and density ; Ocean circulation; tides ; waves; coastal processes ; land-atmosphere interaction, ocean-atmosphere interaction. Weather phenomena - Indian monsoon system; El Nino-Southern Oscillation (ENSO); Tropical cyclones; monsoon depressions; other systems. Controls of the climate system; Land-atmosphere-ocean interactions; Carbon cycle ; climatic classifications ; climatic change and variability ; climatic data

Concept of an ecosystem: understanding ecosystem, ecosystem degradation, resource utilization. structure and functions of an ecosystem; producers, consumers and decomposers; energy and matter flow in the ecosystem: water cycle, carbon cycle, oxygen cycle, nitrogen cycle, energy cycle; food chains, food web and ecological pyramids; forest ecosystems; grassland ecosystems; desert ecosystems; aquatic ecosystems.

Introduction to Human & Social Geography. Planning for Regional Development. Basic concepts and scope of Regional Development. Integrated area development planning (AIDP), considerations for planning of Hilly areas, Drought prone areas/ Deserts, coastal communities. Causes and consequences of regional disparities, medical geography, natural resources utilization patterns and sustainable development.
TEXT BOOKS/REFERENCES:

23GE602 FUNDAMENTALS OF GIS AND GEOSTATISTICS 3-0-1-4

Course Outcomes

CO1: Understanding of spatial data, its types and how to handle it.

CO2: Map generation and its understanding in a GIS software (including open source software)

CO3: Fundamentals of spatial statistics and introduction to R software

CO4: Time series analysis in geospatial datasets

Cartography & GIS: Intro to Geographic Information Systems (GIS) and their applications; Vector and Raster data operations. Spatial phenomena and its distribution, diversity of representation forms, map types, scale, projections, coordinate system. Concepts of map making: Data Posting, symbolizations, typography; Contour Map; primary and derivative map, features and resolution. Map making ArcGIS, digitization.

Google earth: Exporting vector and raster maps to KML; Reading KML files through R, obtaining data via google service, export of maps to google earth.

Time series analysis: Examples of time series; Purposes of analysis; Components (trend, cycle, seasonal, irregular); Stationarity and autocorrelation; Approaches to time series analysis; Simple descriptive methods: smoothing, decomposition; Regression.
Skills acquired: Practical knowledge of GIS softwares, statistical and time series analysis of geospatial data using R

TEXT BOOKS/REFERENCES:

23GE603 PRINCIPLES OF REMOTE SENSING 2-0-1-3

CO1: Define the concepts of remote sensing and applications
CO2: Describe electromagnetic spectrum and the interactions with various media
CO3: Detail the various sensors and image acquisition techniques
CO4: Acquire remote sensing images from common multispectral platforms
CO5: Apply the basics of image processing to remote sensing images

Optical imagery: spectral sensitivity, band combinations, Imaging systems, Photogrammetry – geometry of aerial photographs, projections, scale, relief displacement, parallax, stereoscopy, co-ordinate systems, transformations, orientations, triangulation, DEM, DSM, DTM, orthophoto.

Digital image processing – digital image formats, image histograms, Image pre-processing, corrections; image enhancements – contrast enhancement, density slicing, spatial filtering, spectral enhancement, PCA; Image classification – supervised, unsupervised and hybrid techniques; visual image interpretation.

Thermal Remote Sensing: thermal sensors, thermal image interpretation, emissivity, thermal inertia, applications of thermal remote sensing.

Commonly used multi-spectral remote sensing satellite systems: LANDSAT, SPOT, ENVISAT, RADARSAT, IRS, IKONOS, SENTINEL Family, RISAT, RESOURCESAT etc

Skills acquired: Acquire and perform basic processing of multispectral remote sensing images, understanding of various satellite sensors and their applications
TEXT BOOKS/REFERENCES:
5. Elements of Photogrammetry by Paul R. Wolf, McGraw-Hill, Inc

23GE604 GEODETIC SURVEYING AND MONITORING METHODS 2-0-1-3

Course Outcomes (CO)

CO1	Introduction and foundation of Geodetic survey
CO2	To learn technological enhancements in Geodetic monitoring
CO3	Introduction and application of modern Geodetic survey equipment: total station, DGPS, EDM, Drones etc.
CO4	Application of satellite Geodetic survey: gravimetry and altimetry

Familiarization with high precision surveying instrument systems. Become capable of applying geodetic theory in high precision monitoring networks.

Introduction to Geodesy: Basics of Geodesy, its Classification and scope of Geodesy for the Benefit of Society. Georeferencing and Projection: Understanding coordinate system, Datum, Map Projection, Georeferencing, and techniques of spatial data superposition, introduction to PNT (expert lectures).

Measurements Methods: Distance, angle measurements, errors and uncertainties and impact on designing the survey plan, use of Compass, EDM, Ultrasonic Methods, VLBI, Global Positioning System (GPS-DGPS) Monitoring and Improvements.

Basic Surveying: Surveying principles, equipment, errors sources, and setting ground control points (GCP), Topographical surveying using total station, GNSS and Space Exploration, Integrated Geodetic Measurements.

Geometrical and Gravimetric observations: Satellite gravimetry from Gravity Recovery and Climate Experiment (GRACE) and GRACE follow-on (GRACE-FO). Satellite altimetry: Concept of data acquisition and correction, applications and limitations, hands on different missions like Jason series, envisat, SARAL-altika, etc.

Exploratory data analysis: ground based radiometer data acquisition, sampling design, Developing skills in data collection, processing, analysis and interpretation via advanced and complex calculations and computer programming. DEM generation from contour data.
Drone: Data acquisition from drone camera, data correction and interpretation. Stereo Photogrammetry, Concept of Orientation and Aerial Triangulation, Digital Terrain Modeling\Digital Surface Model 3D Feature Extraction, 3D city modeling.
Case studies of smart city applications, disaster management etc

Skills acquired: Theoretical and practical knowledge of acquiring and processing data from surveying equipments, GNSS, geometrical, gravimetric, radiometric and drone based observations

TEXT BOOKS/REFERENCES:

Geodesy

SUGGESTED REFERENCES

23GE681 ADVANCED COMPUTER PROGRAMMING 0-0-1-1

Course Outcomes

CO1: Understand the fundamentals of Python programming language
CO2: Learn the concepts of object oriented programming in Python
CO3: Execute Python scripts for simple data analysis
CO4: Utilise data frames for data analysis
CO5: Create simple visualisations and graphs for data analysis

Introduction to Python, variables, data types, objects and object oriented programming, classes, inheritance, lists and indices, loops, conditional statements, functions, script files, loading and using
modules

Numpy arrays, Data analysis using pandas, plotting using Matplotlib, programming with spatial data

Skills acquired: Basics of python programming

TEXT BOOKS/REFERENCES:

23GE611 ADVANCED REMOTE SENSING
0-1-4

COURSE OUTCOMES:

On completion of this course, the student shall be able to

1. Understand concepts of Radar systems and its application
2. Gain knowledge in the principles of Lidar data and interpretation
3. Understand the various application domains of hyperspectral remote sensing
4. Gain exposure various image processing techniques

Image processing: Image registration – definition principle and procedure - Fundamental of image recertification, interpolation- intensity interpolation- Radiometric & geometric correction of remotely sensed data. Basic statistical concept in DIP and use of probability methods in DIP- Image enhancement techniques - an overview-Contrast enhancement - linear and nonlinear, histogram equalisation and density slicing Spatial filtering and edge enhancement, Multi image manipulation – addition, subtraction and band rationing -Enhancement by using colours – advantages, types of colour enhancements

RADAR Techniques: SAR Interferometry (InSAR, DInSAR) and Polarimetry: [fundamental concept, methodology, processing, application], SAR Systems and Image Acquisition Modes, SAR data processing and backscatter image generation, Advance techniques of SAR Remote Sensing, Application of SAR imagery in the field of defence and security; Fundamentals of RADAR, SAR Interferometry, and SAR imagery; Introduction to SAR sensors and platforms, SAR geometrical and radiometric effects, enhancements of a SAR image, basic SAR imagery ordering, interpretation of SAR imagery, SAR signatures, change detection using amplitude and interferometry coherence map, SAR interferometry ordering, coherence maps, DEM generation, interferogram and displacement maps SAR interferometry
applications in the field of security and defence; Applications of RADAR - soil response-vegetation response- water and ice response- urban area response

LiDAR: Measurements using LiDAR and its applications: temporal and spatial coverage, Impact of Errors, Information extraction from LiDAR data, Principles of LiDAR, LiDAR sensors and platforms, LiDAR data view, processing, and analysis, LiDAR applications: topographic mapping, vegetation characterization, and 3-D modeling of urban infrastructure, Basic skills of LiDAR needed to leverage the commercial LiDAR sources, Software packages (ArcGIS LAS Dataset; FUSION/LDV; PointVue LE; LASTools) for LiDAR data displaying, processing, and analyzing. LIDAR data applications

Hyper-spectral Remote Sensing: Hyper-spectral Imaging: Hyper spectral concepts, data collection systems, calibration techniques, data processing techniques; preprocessing, N-dimensional scatter-plots, Special angle mapping, Spectral mixture analysis, Spectral Matching, Mixture tuned matched filtering, Classification techniques, airborne and space-borne hyperspectral sensors, applications. High resolution hyperspectral satellite systems: Sensors, orbit characteristics, description of satellite systems, data processing aspects, applications.

Skills acquired: Theoretical and practical knowledge of acquiring and processing RADAR, LiDAR and hyperspectral data.

REFERENCES:

6. Pinliang Dong and QiChen., Lidar remote sensing and applications ISBN 9781138747241 Published December 12, 2017 by CRC Press220 Pages 40 Color & 143 B/W Illustrations

23GE612 ADVANCED GIS AND GEOSPATIAL MODELLING 2-0-1-3

Course Outcomes

CO1 : Exploring different geospatial data types and statistical methods

CO2: GIS techniques in GIS software and model builder (ArcGIS/Q-GIS)

CO3: Point pattern analysis and spatial interpolation

CO4: Geospatial multi-criteria decision making and site suitability analysis

CO5: Network analysis

Contribution of geospatial tech in different industrial and govt projects and their economic impact. Legal and policy aspects. Guest lectures: sharing of real time applications from invited talks.

Note : software flexibility (ARCGIS/QGIS)

Skills acquired : Experience on working with geospatial data for societal benefit using GIS software

TEXT BOOKS/REFERENCES:

23GE614 GEOTECHNICAL AND IOT MONITORING METHODS 2-0-1-3

Course Outcomes (CO)

CO1:	To provide an introduction to geotechnical engineering and soil mechanics and an understanding of the scope of these subjects
CO2:	To familiarize the student with basic terms and concepts in soil mechanics
CO3:	Provide the theoretical basis for understanding geophysical measurements and observations
CO4:	To be able to choose appropriate geophysical techniques to address problems relevant to society, such as natural hazards, resource exploration and management, and environmental issues
CO9: Ability to understand and work with geophysical modelling and inversion software to translate field measurements into subsurface properties

Geotechnical investigations: Introduction to soil mechanics, basic definitions, origin and formation of soils, soil particle size, soil structure, mechanical analysis of soil, particle size distribution, sieve analysis, Atterbergs parameters, physical and mechanical properties of soils, flow through soils, Darcy’s Law, aquifers. Dam structural stability - uplift pressure/seepage pressure, removal mechanisms for seepage water. Soil shear strength, practical applications, and soil stabilizations, advanced techniques (nano-clays) in soil stabilization and remediation measures. Soil conservation measures, climate change on soil geotechnical properties-soil-atmospheric interactions and extreme event patterns, Case studies on IoT based geotechnical solutions.

Interfacing Geo-technical sensors with Arduino and Raspberry pi, Building networked devices for different applications. Real-world case study: Landslide monitoring sites in Munnar and Sikkim, IoT in disaster management.

Skills acquired: Use of IoT systems for Earth monitoring, hands-on experience working with real world deployment and data

Geotechnical

23GE613 APPLIED MACHINE LEARNING 3-0-1-4

Course Outcomes

Learning Outcomes

LO1 To introduce different machine learning paradigms
LO2 To provide understanding of machine learning algorithms to be used on a given dataset for regression/classification problems.

Course Outcomes

CO1 Ability to conduct data analysis and data visualization
CO2 Apply the complete ML pipeline in real-world dataset - Analyse datasets, decide pre-processing steps, visualize data, apply ML models, and infer the meaning based on different performance metrics.

Course contents

Introduction to machine learning and machine learning applications. Data featurization, vectorization, linear algebra and matrix representations.
Supervised learning - linear regression, polynomial regression, logistic regression, Support Vector Machine and ANN. Regularization, tuning, overfitting, underfitting.
Unsupervised learning: Clustering, dimensionality reduction.
Deep Neural networks: multilayer perceptron, transfer learning, edge models. ML model evaluation metrics, MLOps - introduction to converting ML models from test bench to production (saving, loading, using trained models).

Textbooks

1. An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2022)

RESEARCH METHODOLOGY

CO1:	Familiarise with the concepts of research, problem formulation
CO2:	Learn how to conduct a critical review of research literature on a chosen topic
CO3:	Understand the concepts behind data analysis
CO4:	Familiarise with the ethical aspects of research
CO5:	Application of the tools in a practical problem

Unit I:

Unit II:
Problem Formulation, Understanding Modeling & Simulation, Conducting Literature Review, Referencing, Information Sources, Information Retrieval, Role of libraries in Information Retrieval, Tools for identifying literatures, Indexing and abstracting services, Citation indexes

Unit III:
Experimental Research: Cause effect relationship, Development of Hypothesis, Measurement Systems Analysis, Error Propagation, Validity of experiments, Statistical Design of Experiments, Field Experiments, Data/Variable Types & Classification, Data collection, Numerical and Graphical Data Analysis: Sampling, Observation, Surveys, Inferential Statistics, and Interpretation of Results

Unit IV:
Preparation of Dissertation and Research Papers, Tables and illustrations, Guidelines for writing the abstract, introduction, methodology, results and discussion, conclusion sections of a manuscript. References, Citation and listing system of documents

TEXT BOOKS/ REFERENCES:

Syllabus for Elective Courses

23GE732: Geoelectrical Characterisation And Monitoring Methods (BGS offered course)

2013
Course Description

Electrical Resistivity Tomography (ERT) method: geophysical method applied to the characterisation and monitoring of the near-surface. ERT surveys can be applied to the geological, hydrological and engineering investigation of the subsurface in 2D or 3D. It allows the characterisation of e.g. landslides, karst landscapes, wetlands, earth dams, landfills, mine tailings, archeological sites, etc. Applied as a monitoring tool, it provides critical information related to changes in moisture content or changes in temperature in the ground.

Learning Objectives:

1. Training in ERT field campaign planning
2. Learning techniques of ERT data acquisition and processing
3. Insights of ERT data interpretation through data from real world deployments
4. ERT surveys, lab experiment and time-lapse experiences
5. Establish a solid scientific foundation for the students in the field of Electrical Resistivity.
6. Develop a coherent understanding of ERT applications to several of the world's problems (such as Landslides, ground water quality etc.) from a scientific perspective.

Skills acquired: experience in ERT measurement, data interpretation and applications

23GE734 SMART CITIES AND URBAN PLANNING 2-0-1-3

Skills acquired: Knowledge in using GIS techniques in city planning and development

Learning Outcomes:

1. concepts of urbanization and urban growth
2. GIS based Urban studies
3. Introduction to urban growth modeling
4. Models like cellular automata, markov random, agent based model
5. Python scripting examples for urban applications

TEXT BOOKS/REFERENCES:
5. Peer reviewed journal papers

23GE743 SUSTAINABLE DEVELOPMENT-FRAMEWORKS AND SOLUTIONS 2-0-1-3

Introduction to Sustainable Development: Glimpse into History and Current practices - Broad introduction to SD - its importance, need, impact and implications; definition coined; evolution of SD perspectives (MDGs AND SDGs) over the years; recent debates; 1987 Brundtland Commission and outcome; later UN summits (Rio summit, etc.) and outcome. Ecosystem & Sustainability: Fundamentals of ecology - types of ecosystems & interrelationships, factors influencing sustainability of ecosystems, ecosystem restoration - developmental needs. Introduction to sustainability & its factors, requirements for sustainability: food security and agriculture, renewable resources - energy, non-renewable resources, factors and trade-offs, sustainability conflicts, a conceptual framework for linking sustainability and sustainable development.

Dimensions to Sustainable Development - society, environment, culture and economy; current challenges - natural, political, socio-economic imbalance; sustainable development initiatives and policies of various countries: global, regional, national, local; needs of present and future generation - political, economic, environmental.

Gauging Sustainable Development - Sustainability and development indicators and SDGs, UN’s outlook of sustainable development and efforts, UN SDGs - structure, governance and partnerships; communities / society: ensuring resilience and primary needs in society; biosphere: development within planetary boundaries; strengthening institutions for sustainability; shaping a sustainable economy.

Frameworks of Sustainability - Analytical frameworks in sustainability studies, sustainability metrics: criteria and indicators; the significance of quantitative and qualitative assessments of sustainability; current metrics and limitations; metrics for mapping and measuring sustainable development; application of the metrics in real scenarios

Critical Perspectives on Sustainable Development: Resource management and implications on sustainable development, implications for valuation, risk assessment; integrated decision-making processes: requirements of information, information flow, data analytics, learning from historical data, multicriteria decisions, multi level decisions, participatory decisions ; translating impact chains to information flows - impact of governance and policies, management and communication strategies for user adoption.
Text Books/Reference Materials

23GE742 ENVIRONMENTAL GEOLOGY AND GEOHAZARDS 2013

Class projects: Study of seismic and flood prone areas in India, Evaluation of environmental impact of air pollution, contaminated groundwater, landslides, deforestation, cultivation and building construction in specified areas and affected societies.

Learning Outcomes:
1. Fundamental Principles of Environmental Geology
2. Weathering and Soil forming processes
3. Concepts of natural ecosystems on the Earth and their mutual inter-relations and interactions
4. Air pollution and ground pollution.
5. Geohazards concepts and project work

TEXT BOOKS/REFERENCES:
Keller E A; Environmental Geology
Unit 1: Understand the definitions of risk, vulnerability and indicators of vulnerability, capacity and disasters, and common approaches to vulnerability assessment, methods and tools, and challenges thereof.

· Unit 2: Review National and International disaster risk reduction policies, frameworks, and governance mechanisms by governments and international non-governmental organizations including the National Disaster Management Authority (NDMA) Government of India, the United Nations Sendai Framework for Disaster Risk Reduction, the Paris Agreement, United Nation’s Sustainable Development Goals related to climate action etc.

· Unit 3: Critically evaluate the extant literature on multi-disciplinary scientific frameworks and tools for vulnerability identification and assessment including and Social Vulnerability Index (SoVI), Threat and Hazard Identification and Risk Assessment (THIRA), Vulnerability and Capacity Assessments (VCA) and Community Based Disaster Risk Assessment (CBDRA).

· Unit 4: Examine the successes and failures of structural and non-structural disaster risk reduction or mitigation strategies including nature-based solutions (NbS) popularized by national and international agencies through case study analyses, to demonstrate the interconnectedness between community vulnerabilities and protective action implementations.

· Unit 5: Work on a group-based case study project that involves conducting a vulnerability assessment of an identified community or sub-population, reviewing policies and offering an integrated disaster risk reduction solution

TEXT BOOKS/ JOURNAL ARTICLES AND REFERENCES

Unit 1: Definitions and common approaches to Vulnerability Assessment

Unit 2: National and International Disaster Risk Reduction Frameworks and Policies

1. International Federation of Red Cross and Red Crescent Societies. https://www.rcrc-resilience-southeastasia.org/

Units 3 & 4: Multi-disciplinary scientific frameworks and tools for vulnerability assessment and case study comparisons

7. UNDP, 2010: Mapping climate change vulnerability.
9. Chapters 2, 4, 5, 6, 9 from Twigg (2015)

10. Chapters 7, 8, 11, 12, 13, 16 from Twigg (2015)

Youtube Videos

1. 5 EXTREME Natural Disasters Caught on Camera. Available at, https://www.youtube.com/watch?v=d6uJy9WgM4U&ab_channel=Underworld

23GE682 LIVE-IN-LABS I: PARTICIPATORY DESIGN AND MODELLING 0-0-0-0

AMRITA University has established live-in-labs at 100+ locations, mostly in rural areas spread across the length and breadth of India. Live-in-Labs© is an opportunity for students to live in a village environment so they can study problems first-hand in water, health, education, etc. and work together to devise solutions. Live-In-Labs will provide an experiential learning opportunity where each student can come and spend for 2 weeks to a semester in one of the live in labs based on the area. They will become part of the interdisciplinary team of students and faculty drawn from across the disciplines from all participating universities. The live-in-labs have varied focus areas such as energy, water, healthcare, education, waste management, ICT for billion, skill building etc.

During this process the students will share village life and observe and understand problems encompassing health and hygiene, energy, water, waste, environment, etc., touching the villagers’ lives, and define projects that seek to address these problems, devise solutions, implement, test and eventually demonstrate innovative solutions. One definitive achievement is that they will receive a deeper understanding of challenges faced by emerging developing countries. This gives the wonderful opportunity since emerging countries have the largest opportunity for new ideas, innovative solutions etc.
Identify the problem, Proposal Writing - Proposal Format, Budget Estimation, Proposal Drafts, Proposal re-evaluation, Final Proposal Draft. Advanced Human Centered Design

23GE781 LIVE-IN-LABS II: LAB-TO-FIELD: PEOPLE CENTERED INNOVATION 0-0-0-0

Sustainable Approach to Product Designing, Project Management, Planning, Implementing Evaluation of Implementation, Plan with Domain Experts, Design Optimization

23GE782 LIVE-IN-LABS III: SOCIAL BUSINESS: PEOPLE CENTERED INNOVATION 0-0-1-1

23HU601 Career Competency I L-T-P-C: 0-0-3-P/F

Pre-requisite: An open mind and the urge for self-development, basic English language skills and knowledge of high school level arithmetic.

Course Objectives:
- Help students transit from campus to corporate and enhance their soft skills
- Enable students to understand the importance of goal setting and time management skills
- Support them in developing their problem solving and reasoning skills
- Inspire students to enhance their diction, grammar and verbal reasoning skills

Course Outcomes:
CO1: Soft Skills - To develop positive mindset, communicate professionally, manage time effectively and set personal goals and achieve them.
CO2: Soft Skills - To make formal and informal presentations with self-confidence.
CO3: Aptitude - To analyze, understand and employ the most suitable methods to solve questions on arithmetic and algebra.
CO4: Aptitude - To analyze, understand and apply suitable techniques to solve questions on logical reasoning and data analysis.
CO5: Verbal - To infer the meaning of words and use them in the right context. To have a better understanding of the nuances of English grammar and become capable of applying them effectively.
CO6: Verbal - To identify the relationship between words using reasoning skills. To understand and analyze arguments and use inductive/deductive reasoning to arrive at conclusions and communicate ideas/perspectives convincingly.
CO-PO Mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO6</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Syllabus

Soft Skills
Introduction to ‘campus to corporate transition’:
Communication and listening skills: communication process, barriers to communication, verbal and non-verbal communications, elements of effective communication, listening skills, empathetic listening, role of perception in communication.
Assertiveness skills: the concept, assertiveness and self-esteem, advantages of being assertive, assertiveness and organizational effectiveness.
Self-perception and self-confidence: locus of control (internal v/s external), person perception, social perception, attribution theories-self presentation and impression management, the concept of self and self-confidence, how to develop self-confidence.
Goal setting: the concept, personal values and personal goals, goal setting theory, six areas of goal setting, process of goal setting: SMART goals, how to set personal goals
Time management: the value of time, setting goals/ planning and prioritizing, check the time killing habits, procrastination, tools for time management, rules for time management, strategies for effective time management
Presentation skills: the process of presentation, adult learning principles, preparation and planning, practice, delivery, effective use of voice and body language, effective use of audio visual aids, dos and don’ts of effective presentation
Public speaking-an art, language fluency, the domain expertise (Business GK, Current affairs), self-confidence, the audience, learning principles, body language, energy level and conviction, student presentations in teams of five with debriefing

Verbal
Vocabulary: Familiarize students with the etymology of words, help them realize the relevance of word analysis and enable them to answer synonym and antonym questions. Create an awareness about the frequently misspelt words, commonly confused words and wrong form of words in English.
Grammar: Train students to understand the nuances of English Grammar and thereby enable them to spot grammatical errors and punctuation errors in sentences.
Reasoning: Stress the importance of understanding the relationship between words through analogy questions and learn logical reasoning through syllogism questions. Emphasize the importance of avoiding the gap (assumption) in arguments/ statements/ communication.

Oral Communication Skills: Aid students in using the gift of the gab to improve their debating skills.
Writing Skills: Introduce formal written communication and keep the students informed about the etiquettes of email writing. Make students practise writing emails especially composing job application emails.
Aptitude

Numbers: Types, Power Cycles, Divisibility, Prime, Factors & Multiples, HCF & LCM, Surds, Indices, Square roots, Cube Roots and Simplification.

Percentage: Basics, Profit, Loss & Discount, and Simple & Compound Interest.

Ratio, Proportion & Variation: Basics, Alligations, Mixtures, and Partnership.

Averages: Basics, and Weighted Average.

Time and Work: Basics, Pipes & Cistern, and Work Equivalence.

Time, Speed and Distance: Basics, Average Speed, Relative Speed, Boats & Streams, Races and Circular tracks.

Statistics: Mean, Median, Mode, Range, Variance, Quartile Deviation and Standard Deviation.

Data Interpretation: Tables, Bar Diagrams, Line Graphs, Pie Charts, Caselets, Mixed Varieties, and other forms of data representation.

Equations: Basics, Linear, Quadratic, Equations of Higher Degree and Problems on ages.

Logarithms, Inequalities and Modulus: Basics

References

Soft Skills

Communication and listening skills:

Assertiveness skills:
- John Hayes “Interpersonal skills at work”, Routledge, 2003

Self-perception and self-confidence:

Time management:
- Stephen Covey, “The habits of highly effective people”, Free press Revised edition, 2004
- Kenneth H. Blanchard and Spencer Johnson, “The One Minute Manager”, William Morrow, 1984

Verbal
- Erica Meltzer, “The Ultimate Guide to SAT Grammar”
- Jeff Kolby, Scott Thornburg & Kathleen Pierce, “Nova’s GRE Prep Course”
- Kaplan’s GRE Comprehensive Programme
- Manhattan Prep, “GRE Verbal Strategies Effective Strategies Practice from 99th Percentile Instructors”
- Wren & Martin, “English Grammar & Composition”
Aptitude
- www.mbatious.com
- www.campusgate.co.in
- www.careerbless.com

Evaluation Pattern

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment (CA)* – Soft Skills</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Continuous Assessment (CA)* – Aptitude</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Continuous Assessment (CA)* – Verbal</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Pass / Fail
CA - Can be presentations, speaking activities and tests.

Pre-requisite: Willingness to learn, team spirit, basic English language and communication skills and knowledge of high school level arithmetic.

Course Objectives:
- Help students to understand the importance of interpersonal skills and team work
- Prepare the students for effective group discussions and interviews participation.
- Help students to sharpen their problem solving and reasoning skills
- Empower students to communicate effectively by using the correct diction, grammar and verbal reasoning skills

Course Outcomes:
CO1: Soft Skills - To demonstrate good interpersonal skills, solve problems and effectively participate in group discussions.
CO2: Soft Skills - To write technical resume and perform effectively in interviews.
CO3: Aptitude - To identify, investigate and arrive at appropriate strategies to solve questions on arithmetic by managing time effectively.

CO4: Aptitude - To investigate, understand and use appropriate techniques to solve questions on logical reasoning and data analysis by managing time effectively.

CO5: Verbal - To be able to use diction that is more refined and appropriate and to be competent in knowledge of grammar to correct/improve sentences

CO6: Verbal - To be able to examine, interpret and investigate passages and to be able to generate ideas, structure them logically and express them in a style that is comprehensible to the audience/recipient.

CO-PO Mapping

<table>
<thead>
<tr>
<th>PO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO6</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Syllabus

Soft Skills

Interpersonal skill: ability to manage conflict, flexibility, empathetic listening, assertiveness, stress management, problem solving, understanding one’s own interpersonal needs, role of effective teamwork in organizations

Group problem solving: the process, the challenges, the skills and knowledge required for the same.

Conflict management: the concept, its impact and importance in personal and professional lives, (activity to identify personal style of conflict management, developing insights that helps in future conflict management situations.)

Team building and working effectively in teams: the concept of groups (teams), different stages of group formation, process of team building, group dynamics, characteristics of effective team, role of leadership in team effectiveness. (Exercise to demonstrate the process of emergence of leadership in a group, debrief and reflection), group discussions.

Interview skills: what is the purpose of a job interview, types of job interviews, how to prepare for an interview, dos and don’ts of interview, One on one mock interview sessions with each student

Verbal

Vocabulary: Help students understand the usage of words in different contexts. Stress the importance of using refined language through idioms and phrasal verbs.

Grammar: Enable students to identify poorly constructed sentences or incorrect sentences and improvise or correct them.

Reasoning: Facilitate the student to tap her/his reasoning skills through critical reasoning questions and logical ordering of sentences.

Reading Comprehension: Enlighten students on the different strategies involved in tackling reading comprehension questions.

Public Speaking Skills: Empower students to overcome glossophobia and speak effectively and confidently before an audience.

Writing Skills: Practice closet tests that assess basic knowledge and skills in usage and mechanics of writing such as punctuation, basic grammar and usage, sentence structure and rhetorical skills such as
writing strategy, organization, and style.

Aptitude

Sequence and Series: Basics, AP, GP, HP, and Special Series.

Geometry: 2D, 3D, Coordinate Geometry, and Heights & Distance.

Permutations & Combinations: Basics, Fundamental Counting Principle, Circular Arrangements, and Derangements.

Probability: Basics, Addition & Multiplication Theorems, Conditional Probability and Bayes' Theorem.

Logical Reasoning I: Arrangements, Sequencing, Scheduling, Venn Diagram, Network Diagrams, Binary Logic, and Logical Connectives, Clocks, Calendars, Cubes, Non-Verbal reasoning and Symbol based reasoning.

Logical Reasoning II: Blood Relations, Direction Test, Syllogisms, Series, Odd man out, Coding & Decoding, Cryptarithmetic Problems and Input - Output Reasoning.

Data Sufficiency: Introduction, 5 Options Data Sufficiency and 4 Options Data Sufficiency.

Campus recruitment papers: Discussion of previous year question papers of all major recruiters of Amrita Vishwa Vidyapeetham.

Miscellaneous: Interview Puzzles, Calculation Techniques and Time Management Strategies.

References

Soft Skills

Team Building

- Thomas L. Quick, "Successful team building", AMACOM Div American Mgmt Assn, 1992

Verbal

- “GMAT Official Guide” by the Graduate Management Admission Council, 2019
- Arun Sharma, “How to Prepare for Verbal Ability And Reading Comprehension For CAT”
- Joern Meissner, “Turbocharge Your GMAT Sentence Correction Study Guide”, 2012
- Kaplan, “Kaplan GMAT 2012 & 13”
- Mike Barrett “SAT Prep Black Book The Most Effective SAT Strategies Ever Published”
- Mike Bryon, “Verbal Reasoning Test Workbook Unbeatable Practice for Verbal Ability, English Usage and Interpretation and Judgement Tests”
- www.bristol.ac.uk/arts/skills/grammar/grammar_tutorial/page_55.htm
- www.campusgate.co.in

Aptitude

Evaluation Pattern

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment (CA)* – Soft Skills</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Continuous Assessment (CA)* – Aptitude</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Continuous Assessment (CA)* – Verbal</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

*CA - Can be presentations, speaking activities and tests.

Course Objectives

The course will enable the students to

- Mastery Over Mind (MaOM) is an Amrita initiative to implement schemes and organize university-wide programs to enhance health and wellbeing of all faculty, staff, and students (UN SDG -3)
- It gives an introduction to immediate and long-term benefits of MA OM meditation and equips every attendee to manage stressful emotions and anxiety, in turn facilitating inner peace and harmony.
- This course will enhance the understanding of experiential learning based on the University’s mission: “Education for Life along with Education for Living” and is aimed to allow learners to realize and rediscover the infinite potential of one’s true Being and the fulfilment of life’s goals.

Course Outcomes

CO1: To be able to describe what meditation is and to understand its health benefits
CO2: To understand the causes of stress and how meditation improves well-being
CO3: To understand the science of meditation
CO4: To learn and practice MAOM meditation in daily life
CO5: To understand the application of meditation to improve communication and relationships
CO6: To be able to understand the power of meditation in compassion-driven action

CO-PO Mapping

<table>
<thead>
<tr>
<th>PO/PSO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
CO4 | 3 | 3 | 2 | 3 | 2 | 3 | 3 |
CO5 | 2 | 2 | 2 | 2 | 3 | 3 |
CO6 | 2 | 2 | 2 | 3 | 3 |

Syllabus:

Unit 1: Describe Meditation and Understand its Benefits (CO1)
A: Importance of meditation. How does meditation help to overcome obstacles in life *(Pre-recorded video with Swami Shubhamritananda Puri)*
Reading 1: Why Meditate? (Swami Shubamritananda ji)

Unit 2: Causes of Stress and How Meditation Improves Well-being (CO2)
A: Learn how to prepare for meditation. Understand the aids that can help in effectively practicing meditation. Understand the role of sleep, physical activity, and a balanced diet in supporting meditation. *(Pre-recorded video with Dr. Ram Manohar)*

Unit 3: The Science of Meditation (CO3)
A: A preliminary understanding of the Science of meditation. What can modern science tell us about this tradition-based method? *(Pre-recorded video with Dr. Shyam Diwakar)*
B: How meditation helps humanity according to what we know from scientific research *(Pre-recorded video with Dr. Shyam Diwakar)*
Reading 1: Does Meditation Aid Brain and Mental Health (Dr Shyam Diwakar)

Unit 4: Practicing MA OM Meditation in Daily Life (CO4)
Guided Meditation Sessions following scripts provided (Level One to Level Five)
Reading 1: MA OM and White Flower Meditation: A Brief Note (Swami Atmananda Puri)

Unit 5: Improving Communication and Relationships (CO5)
How meditation and mindfulness influence interpersonal communication. The role of meditation in improving relationship quality in the family, at the university and in the workplace. *(Pre-recorded video with Dr Shobhana Madhavan)*

Unit 6 Meditation and Compassion-driven Action (CO6)
Understand how meditation can help to motivate compassion-driven action. *(Pre-recorded video with Dr Shobhana Madhavan)*

Text Books/Reference Books:
1. Meditation and Spiritual Life-Swami Yatiswarananda, Ramakrishna Math
3. Dhyana Yoga-Holy Gita Swami Chinmayanda
4. Voice of God, Chandrasekharendra Saraswati, 68th Acharya of Sri Kanchi Kamakoti Peetam,
5. Hindu Dharma-Chandrasekharendra Saraswati, 68th Acharya of Sri Kanchi Kamakoti Peetam,
6. Mind: It’s Mysteries and control-Swami Sivananda Saraswati
8. Books on Amma’s teachings like Awaken children, From Amma’s Heart etc.
11. Seppala E (2022, June 30th Unexpected Ways Meditation Improves Relationships a Lot.Psychology Today

Evaluation Pattern

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Internal</th>
<th>End Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Continuous assessment</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>End Semester/Project</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

CA – Can be Quizzes, Assignment, Projects, and Reports