Academic Regulations of B. Pharm Programme
(June 2023)
VISION
To become a globally recognized academic and research-driven centre of excellence in pharmaceutical sciences through interdisciplinary collaboration that fosters innovation and excellence. We envision being a catalyst for positive change in healthcare, contributing to a sustainable future through holistic education, cutting-edge research, and community engagement.

MISSION
To provide high-quality academic programs and conduct impactful research for sustainable solutions to local and global challenges in pharmaceutical technology and practice. We aim to mold the students to become globally competent and compassionate pharmacy professionals and scientists with the knowledge, skills, and values necessary to excel in a rapidly evolving healthcare landscape.
PROGRAM LEARNING OBJECTIVES - B. PHARM

Knowledge:

1. Apply the fundamental pharmaceutical concepts and principles in the design, discovery, and development of drugs from natural and synthetic sources.
2. Demonstrate a comprehensive understanding of the structures and functions of various systems of the human body and biochemical changes in normal and disease states at cell and molecular levels.
3. Explain the methods of synthesis/isolation, characterization, and biological screening of synthetic and natural molecules.
4. Assess the physicochemical properties of drug substances and excipients to design, manufacture, and ensure the quality of dosage forms as recommended under current Good Manufacturing Practices (cGMP).
5. Illustrate the methods and strategies for drug delivery and optimize pharmaceutical formulations to enhance stability, safety, efficacy, and patient compliance.
6. Outline the laws, regulations, and guidelines governing preclinical and clinical research, stability assessment, manufacture, quality control, and sale of pharmaceuticals, herbal medicine, and nutraceuticals.
7. Illustrate the role of the pharmacist in drug procurement, prescription handling, patient counseling, and dispensing of medications.
8. Critically comment on the various programs of WHO and Govt. of India for the promotion of health and well-being.
9. Apply the principles of pharmacology and toxicology in the treatment of different diseases based on a comprehensive understanding of pharmacokinetics, and pharmacodynamics including dose, mechanism of action, adverse reactions, and drug interactions.

Skill

1. Demonstrate the techniques and equipment for synthesis, isolation manufacturing, and quality control of medicines in compliance with regulatory guidelines.
2. Acquire practical skills in the synthesis and analysis of drug substances, and predict suitable models and screening methods for their evaluation.
3. Apply pharmaceutical calculations in drug analysis, drug dosing, formulation development, and pharmacokinetics to optimize drug development, dispensing, and clinical practice.
4. Solve the real-world problems in drug development, manufacturing, dispensing and clinical use of medicines.
5. Operate different equipment according to the standard operating procedures.
6. Identify research problems, formulate hypotheses, and collect and analyze data.
7. Apply reasoning and principles of pharmacy practice to solve problems related to comprehending medical prescriptions, patient counseling, and drug safety.
8. Identify the risk factors associated with the development of disorders and interpret various physiological parameters relevant to human diseases.
Attitude

1. Appreciate creative thinking and apply innovative solutions to challenges.
2. Appreciate and upgrade technical, intellectual and emotional skills for lifelong learning.
3. Follow newer advancements and stay updated with the latest tools and techniques in pharmaceutical technology and healthcare practice.
4. Communicate effectively, collaborate, and work as a part of interdisciplinary healthcare teams and participate actively in discussions to solve complex problems.
5. Instill a patient-centered approach to improve the quality of life of patients, by prioritizing patients' needs, preferences, and values when providing pharmaceutical care.
6. Embrace a critical and analytical mindset to evaluate scientific literature, pharmaceutical research, and emerging trends in the field, fostering evidence-based decision-making.
7. Foster a proactive and inquisitive attitude towards continuous learning and professional development.
8. Develop a commitment to ethical practices and professional responsibilities in the pharmaceutical industry, including adherence to regulatory guidelines, patient safety, and confidentiality.
9. Assess societal, health, safety and legal issues and actively participate in civic activities to contribute to the common good.
1. **Short Title and Commencement**
These regulations shall be called Academic Regulations 2023 of Amrita Vishwa Vidyapeetham for the Bachelor of Pharmacy Program, which shall come into force from the academic session 2023-2024.

2. **Minimum qualification for admission**

2.1 **B. Pharm (Regular):**
Candidate shall have passed 10+2 examination with minimum 50% marks, conducted by the respective state/central government authorities recognized as equivalent to 10+2 examination by the Association of Indian Universities(AIU)with English as one of the courses and Physics, Chemistry, Mathematics (P.C.M) and or Biology (P.C.B /P.C.M.B.) as optional courses individually or any other qualification approved by the Pharmacy Council of India as equivalent to any of the above examinations.

2.2. **B. Pharm lateral entry (directly to third semester):**
A pass in D. Pharm program from an institution approved by the Pharmacy Council of India under section 12 of the Pharmacy Act.

3. **Duration of the program**
The course of study for B. Pharm shall extend over a period of eight semesters (four academic years) and six semesters (three academic years) for lateral entry students.

4. **Medium of instruction and examinations**
The medium of instruction and examination shall be English.

5. **Working days in each semester**
Each semester shall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June/July to November/December and the even semesters shall be conducted from December/January to May/June in every calendar year.

6. **Attendance and progress**
100% attendance is necessary for the students, however, a candidate is required to have at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the requirements of the prescribed courses to be eligible to appear for the respective examination/s.

7. **Program/Course credit structure**
As per the philosophy of the Credit Based Semester System, certain quantum of academic work viz. theory classes, tutorial hours, practical classes, practice school, research project are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly, the credit associated with any of the other academic/co-curricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week.
7.1. Credit assignment

7.1.1. Theory and Laboratory courses
Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and/or tutorial (T) hours, and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course are dependent on the number of hours of instruction per week in that course and is obtained by using a multiplier of one (1) for lecture and tutorial hours, and a multiplier of half (1/2) for practical(laboratory) hours. Thus, for example, a theory course having weekly two lectures and one tutorial once in two weeks throughout the semester of 16 weeks carries a credit of 2.5. Similarly, practical having two laboratory hours per week throughout the semester carries a credit of 1.

7.2. Minimum credit requirements
The minimum credit points required for the award of a B. Pharm. degree is 170 out of which 151 are considered for CGPA calculation while for others there are only school-level examinations. These credits are divided into theory courses, tutorials, practical, practice school, and research project over the duration of eight semesters. The credits are distributed semester-wise as shown in Table X. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.

The lateral entry students shall have successfully completed the D. Pharm program and have earned the minimum required credits from the same. Additionally, they shall gain 6 extra credit points for the following school level courses.

- Communication Skills (Theory and Practical) – 3 credits during their third semester
- Computer Applications in Pharmacy (Theory and Practical) – 3 credits during their fourth semester.

8. Academic work
A regular record of all academic activities for both Theory and Practical shall be maintained in Amrita University Management System (AUMS) by the faculty in charge of the respective courses.

9. Course of study
The course of study for B. Pharm shall include Semester Wise Theory & Practical as given in Tables – I to IX. The number of hours to be devoted to each theory, tutorial land practical course in any semester shall be as shown in Tables–I to IX.

Category: PHAR-Pharmacy courses; HUM-Humanities courses; SCI-Science courses; Skill-Skill based courses
Table-I: Course of Study for Semester I

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP101T</td>
<td>Human Anatomy and Physiology I–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP102T</td>
<td>Pharmaceutical Analysis I–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP103T</td>
<td>Pharmaceutics I– Theory</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP104T</td>
<td>Pharmaceutical Inorganic Chemistry–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>HUM</td>
<td>BP105T</td>
<td>Communication skills–Theory*</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>SCI</td>
<td>BP106RBT</td>
<td>Remedial Biology/ Remedial Mathematics#–Theory*</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>HUM</td>
<td>22ADM101</td>
<td>Foundations of Indian Heritage - Theory*</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>HUM</td>
<td>22AVP103</td>
<td>Mastery Over Mind–Theory*</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP109P</td>
<td>Pharmaceutical Analysis I–Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP110P</td>
<td>Pharmaceutics I–Practical</td>
<td>3</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP111P</td>
<td>Pharmaceutical Inorganic Chemistry–Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>HUM</td>
<td>BP112P</td>
<td>Communication skills–Practical*</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>23/25</td>
<td></td>
<td>20/22</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

#Applicable only for the students appearing for Remedial Biology (RB)/Remedial Mathematics (RM) course.

*School level exam (non CGPA)
Table II: Course of Study for Semester II

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP201T</td>
<td>Human Anatomy and Physiology II–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP202T</td>
<td>Pharmaceutical Organic Chemistry I–Theory</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP203T</td>
<td>Biochemistry–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP204T</td>
<td>Pharmaceutical Engineering–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP205T</td>
<td>Computer Applications in Pharmacy–Theory*</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>HUM</td>
<td>22ADM111</td>
<td>Glimpses of Glorious India -Theory*</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP207P</td>
<td>Human Anatomy and Physiology II–Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP208P</td>
<td>Pharmaceutical Organic Chemistry I–Practical</td>
<td>3</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP209P</td>
<td>Biochemistry–Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP210P</td>
<td>Pharmaceutical Engineering–Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP211P</td>
<td>Computer Applications in Pharmacy–Practical*</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>24</td>
<td>1.5</td>
<td>20</td>
</tr>
</tbody>
</table>

*School level exam (non CGPA)

Table III: Course of Study for Semester III

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP301T</td>
<td>Pharmaceutical Organic Chemistry II–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP302T</td>
<td>Physical Pharmaceutics I–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP303T</td>
<td>Pharmaceutical Microbiology–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP304T</td>
<td>Pathophysiology–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP305T</td>
<td>Pharmacognosy and Phytochemistry I–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP306T</td>
<td>Social & Preventive Pharmacy–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>HUM</td>
<td>BP307T</td>
<td>Environmental sciences–Theory*</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>HUM</td>
<td></td>
<td>Amrita Value Programme I-Theory*</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP309P</td>
<td>Pharmaceutical Organic Chemistry II–Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP310P</td>
<td>Physical Pharmaceutics I–Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP311P</td>
<td>Pharmaceutical Microbiology–Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP312P</td>
<td>Pharmacognosy and Phytochemistry I–Practical</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>23</td>
<td>3</td>
<td>22</td>
</tr>
</tbody>
</table>

*School-level exam (non-CGPA)
Table IV: Course of Study for Semester IV

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP401T</td>
<td>Pharmaceutical Organic Chemistry III–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP402T</td>
<td>Medicinal Chemistry I–Theory</td>
<td>3</td>
<td>0.5</td>
<td>3.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP403T</td>
<td>Physical Pharmaceutics II–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP404T</td>
<td>Pharmacology I–Theory</td>
<td>3</td>
<td>0.5</td>
<td>3.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP405T</td>
<td>Pharmacognosy and Phytochemistry II–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP406T</td>
<td>Pharmaceutical Jurisprudence– Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>HUM</td>
<td></td>
<td>Amrita Value Programme II–Theory*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP408P</td>
<td>Physical Pharmaceutics II–Practical</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP409P</td>
<td>Pharmacognosy and Phytochemistry II–Practical</td>
<td>3</td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>3</td>
<td>20.5</td>
</tr>
</tbody>
</table>

*School-level exam (non-CGPA)

Table V: Course of Study for Semester V

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP501T</td>
<td>Medicinal Chemistry II–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP502T</td>
<td>Pharmaceutical Biotechnology–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP503T</td>
<td>Pharmacology II–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP504T</td>
<td>Herbal Drug Technology–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP505T</td>
<td>Industrial Pharmacy I–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP506T</td>
<td>Pharmacy Practice –Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>HUM</td>
<td>BP507T</td>
<td>Life Skill I– Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP508P</td>
<td>Pharmacology II–Practical</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP509P</td>
<td>Herbal Drug Technology–Practical</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP510P</td>
<td>Industrial Pharmacy I–Practical</td>
<td>3</td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21</td>
<td>3.5</td>
<td>21</td>
</tr>
</tbody>
</table>
Table VI: Course of Study for Semester VI

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP601T</td>
<td>Medicinal Chemistry III– Theory</td>
<td>3</td>
<td>0.5</td>
<td>3.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP602T</td>
<td>Pharmacology III–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP603T</td>
<td>Biopharmaceutics and Pharmacokinetics– Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP604T</td>
<td>Industrial Pharmacy II–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP605T</td>
<td>Quality Assurance–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP606T</td>
<td>Pharmacotherapeutics– Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>HUM</td>
<td>BP607T</td>
<td>Life Skill II–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP608P</td>
<td>Medicinal chemistry III–Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP609P</td>
<td>Pharmacology III– Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>19</td>
<td>3.5</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Table VII: Course of Study for Semester VII

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP701T</td>
<td>Instrumental Methods of Analysis–Theory</td>
<td>3</td>
<td>0.5</td>
<td>3.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP702T</td>
<td>Novel Drug Delivery System–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP703T</td>
<td>Biostatistics and Research Methodology–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP704ET</td>
<td>Pharma Marketing Management–Theory</td>
<td>2+2=4</td>
<td>0.5+0.5=1</td>
<td>2.5+2.5=5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP705ET</td>
<td>Pharmaceutical Regulatory Science–Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP706ET</td>
<td>Cosmetic Science –Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP707ET</td>
<td>Computer Aided Drug Design–Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP708ET</td>
<td>Pharmacovigilance–Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP709ET</td>
<td>Cell and Molecular Biology–Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP710ET</td>
<td>Experimental Pharmacology–Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP711ET</td>
<td>Quality Control and Standardization of Herbals Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP712ET</td>
<td>Dietary Supplements and Nutraceuticals–Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM</td>
<td>BP713T</td>
<td>Life Skill III–Theory</td>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP714P</td>
<td>Instrumental Methods of Analysis–Practical</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP715PW</td>
<td>Live in Labs #*</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP716PS</td>
<td>Practice School</td>
<td>16</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>31</td>
<td>3</td>
<td>21/24</td>
</tr>
</tbody>
</table>

*School level exams (non CGPA)

Out of the nine core electives from BP704ET to BP712ET; students need to opt for two courses

Live in Labs is an optional experiential learning initiative. Those who complete it successfully shall get a separate grade sheet/certificate.
Table VIII: Course of Study for Semester VIII

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP801PR</td>
<td>Advanced Practice School & Research Project</td>
<td>32</td>
<td>-</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>32</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Table IX: Value added and Skill based Electives

<table>
<thead>
<tr>
<th>Cat.</th>
<th>Course code</th>
<th>Name of the course</th>
<th>No.of hours</th>
<th>Credit points</th>
<th>Semester in which course can be taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM</td>
<td>BPHUM01</td>
<td>Language: Sanskrit*</td>
<td>2</td>
<td>2</td>
<td>1-IV</td>
</tr>
<tr>
<td>HUM</td>
<td>BPHUM02</td>
<td>Language: Hindi*</td>
<td>2</td>
<td>2</td>
<td>1-IV</td>
</tr>
<tr>
<td>HUM</td>
<td>BPHUM03</td>
<td>Language: Malayalam*</td>
<td>2</td>
<td>2</td>
<td>1-IV</td>
</tr>
<tr>
<td>HUM</td>
<td>BPHUM04</td>
<td>Psychology and Mental Health for Effective Living *</td>
<td>2</td>
<td>2</td>
<td>1-IV</td>
</tr>
<tr>
<td>HUM</td>
<td>BPHUM05</td>
<td>Gender equality*</td>
<td>2</td>
<td>2</td>
<td>1-IV</td>
</tr>
<tr>
<td>HUM</td>
<td>BPHUM06</td>
<td>Health & lifestyle*</td>
<td>2</td>
<td>2</td>
<td>1-IV</td>
</tr>
<tr>
<td>HUM</td>
<td>BPHUM07</td>
<td>Philosophy*</td>
<td>2</td>
<td>2</td>
<td>1-IV</td>
</tr>
<tr>
<td>HUM</td>
<td>BPHUM08</td>
<td>Economics*</td>
<td>2</td>
<td>2</td>
<td>1-IV</td>
</tr>
<tr>
<td>SCI</td>
<td>BPSCI01</td>
<td>Bioethics</td>
<td>2</td>
<td>2</td>
<td>III-VII</td>
</tr>
<tr>
<td>SCI</td>
<td>BPSCI02</td>
<td>Computer programming in AI</td>
<td>2</td>
<td>2</td>
<td>III-VII</td>
</tr>
<tr>
<td>SCI</td>
<td>BPSCI03</td>
<td>Medical/Scientific writing</td>
<td>2</td>
<td>2</td>
<td>III-VII</td>
</tr>
<tr>
<td>SCI</td>
<td>BPSCI04</td>
<td>Clinical data management</td>
<td>2</td>
<td>2</td>
<td>III-VII</td>
</tr>
<tr>
<td>SCI</td>
<td>BPSCI05</td>
<td>Medical coding</td>
<td>2</td>
<td>2</td>
<td>III-VII</td>
</tr>
<tr>
<td>SCI</td>
<td>BPSCI06</td>
<td>Pharmaceutical impurities</td>
<td>2</td>
<td>2</td>
<td>III-VII</td>
</tr>
<tr>
<td>SCI</td>
<td>BPSCI07</td>
<td>Nano synthesis</td>
<td>2</td>
<td>2</td>
<td>III-VII</td>
</tr>
<tr>
<td>SCI</td>
<td>BPSCI08</td>
<td>Medical Devices</td>
<td>2</td>
<td>2</td>
<td>III-VII</td>
</tr>
<tr>
<td>SCI</td>
<td>BPSCI09</td>
<td>Landmarks in drug discovery and major Indian contributions</td>
<td>2</td>
<td>2</td>
<td>III-VII</td>
</tr>
<tr>
<td>SKILL</td>
<td>BPSKILL01</td>
<td>Organizational behavior</td>
<td>2</td>
<td>1</td>
<td>III-VII</td>
</tr>
<tr>
<td>SKILL</td>
<td>BPSKILL02</td>
<td>Graphic design</td>
<td>2</td>
<td>1</td>
<td>III-VII</td>
</tr>
<tr>
<td>SKILL</td>
<td>BPSKILL03</td>
<td>Quality control of pharmaceuticals (SOP, Reporting)</td>
<td>2</td>
<td>1</td>
<td>III-VII</td>
</tr>
<tr>
<td>SKILL</td>
<td>BPSKILL04</td>
<td>Animal handling/ experiments</td>
<td>2</td>
<td>1</td>
<td>V-VII</td>
</tr>
<tr>
<td>SKILL</td>
<td>BPSKILL05</td>
<td>Statistical software</td>
<td>2</td>
<td>1</td>
<td>VII</td>
</tr>
<tr>
<td>SKILL</td>
<td>BPSKILL06</td>
<td>Quality by Design (QbD)</td>
<td>2</td>
<td>1</td>
<td>VII</td>
</tr>
</tbody>
</table>

*School-level exams only
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>22ADM201</td>
<td>Strategic Lessons from Mahabharata</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22ADM211</td>
<td>Leadership from Ramayana</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP210</td>
<td>Kerala Mural Art and Painting</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP218</td>
<td>Yoga Therapy and Lessons</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP212</td>
<td>Introduction to Traditional Indian Systems of Medicine</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP201</td>
<td>Amma’s Life and Message to the modern world</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP204</td>
<td>Lessons from the Upanishads</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP205</td>
<td>Message of the Bhagavad Gita</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP206</td>
<td>Life and Message of Swami Vivekananda</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP207</td>
<td>Life and Teachings of Spiritual Masters of India</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP208</td>
<td>Insights into Indian Arts and Literature</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP213</td>
<td>Traditional Fine Arts of India</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP214</td>
<td>Principles of Worship in India</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP215</td>
<td>Temple Mural Arts in Kerala</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP218</td>
<td>Insights into Indian Classical Music</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP219</td>
<td>Insights into Traditional Indian Painting</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP220</td>
<td>Insights into Indian Classical Dance</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP221</td>
<td>Indian Martial Arts and Self Defense</td>
<td>1-0-0</td>
<td>1</td>
</tr>
<tr>
<td>22AVP209</td>
<td>Yoga and Meditation</td>
<td>1-0-0</td>
<td>1</td>
</tr>
</tbody>
</table>

Value-added courses are those designed to enhance the capability of students beyond the general academic curriculum, which may help to improve the employability of the student. The program offers two categories of value-added courses – Humanities and Sciences. All value-added courses carry 2 credits each.

A student must opt for at least 1 language from the 3 languages offered – Malayalam, Sanskrit and Hindi and 1 other humanity course out of the remaining 5.

Under the Sciences category, there are 9 courses, and a student must opt at least 2 of them.

Skill-based courses are practical-oriented ones to provide the necessary skills to increase the employability quotient and equip the students with essential skills to succeed in life. The program offers 6 skill-based courses and each carries 1 credit. A student must opt for at least 1 course out of the 6 provided. Out of the above electives, the credits of science and skill-based electives are considered for the CGPA calculation and the grades of all electives completed will be included in the 8th-semester grade sheet.
Table X: Semester wise credits distribution

<table>
<thead>
<tr>
<th>Semester</th>
<th>University</th>
<th>School level</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>14</td>
<td>6/8*</td>
<td>20/22</td>
</tr>
<tr>
<td>II</td>
<td>15</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>III</td>
<td>19</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>IV</td>
<td>19.5</td>
<td>1</td>
<td>20.5</td>
</tr>
<tr>
<td>V</td>
<td>21</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>VI</td>
<td>20.5</td>
<td>0</td>
<td>20.5</td>
</tr>
<tr>
<td>VII</td>
<td>21</td>
<td>0/3*</td>
<td>21/24</td>
</tr>
<tr>
<td>VIII</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

Value added and skill based courses: 5

Total credit points for the program: 151

Applicable only for the students appearing for Remedial Biology (RB)/Remedial Mathematics(RM) course (non-CGPA)

* Applicable only for students opting live in labs.
10. Remedial Mathematics/Biology

There are two Remedial courses: Remedial Mathematics/Biology. Those who have not studied biology in plus two shall study Remedial biology and those who have not studied Mathematics in plus two shall study Remedial Mathematics in the first semester and those who have studied both Mathematics & Biology in Plus Two need not study any of these Remedial Courses.

11. Self-Directed Learning (SDL)

Self-directed learning is a process in which an individual takes initiative and responsibility for their own learning, actively engages in setting goals, acquiring knowledge, and evaluating the progress. It involves activities such as diagnosing learning needs, formulating learning goals, identifying resources, choosing and implementing learning strategies, and evaluating learning outcomes. Self-directed learning aims to empower learners to become independent and critical thinkers. Incorporating self-directed learning into daily classes or timetables can greatly enhance students' learning experiences and foster their autonomy.

Scope of SDL includes:

- SDL enables individuals to develop essential life skills, such as critical thinking, problem-solving, communication, and self-reflection.
- It empowers students to explore topics beyond the curriculum and pursue knowledge according to their own interests and pace thus becoming responsible learners.
- It allows for continuous professional growth, adapting to changing job requirements and exploring new career paths.
- It helps develop an entrepreneurial mindset, fosters creativity and innovation, and equips individuals with the necessary skills to start and manage their own ventures.
- Individuals can engage in self-directed learning to acquire new skills, deepen their knowledge in areas of personal interest, and even pursue hobbies that bring them joy and fulfillment.
- It encourages individuals to continue learning throughout their lives, embracing new challenges, and adapting to an ever-changing world.

Self-directed learning (SDL) is incorporated into the semester timetable as it is beneficial for students, promotes autonomy, motivation, and a deeper engagement with the learning process.
12. Academic Advisory Committee

The Academic advisory committee is constituted by the Head of the Institution for each batch of B. Pharm.

The composition of the Committee shall be as follows:
The Principal is the chairperson and senior faculty members of all departments (Associate Professor/Professor grade).

Terms of Reference:

i. Periodically reviewing the process of academic advising
ii. Discuss mentoring activities with students of each batch
iii. Interact with academic advising faculty and give suggestions for overall improvement
iv. Ensure proper documentation of these activities
v. The committee shall meet at least once in a semester

There is a provision for Academic Advising for each batch of B. Pharm. A group of 15 students is assigned under one faculty from the 1st semester onwards and the same faculty may continue till the completion of the 8th semester. The faculty shall interact with each student during the assigned period regarding academic/ other matters and the same shall be documented. Faculty provide guidance and support to their students offering advice, insights, and expertise based on their experiences. They help students to navigate challenges, set goals, and develop strategies for personal and professional growth. They can guide students in selecting electives, practice school, and research project considering their academic and personal interests to meet their ultimate goals.

13. Academic and Professional Standard Committee

The B. Pharm. program shall have an Academic and Professional Standard Committee constituted by the Head of the Institution and senior faculty members from each department involved in teaching B. Pharm courses.

The composition of the Committee shall be as follows:

Principal shall be the chairperson, HODs, and nominees from the departments of Assistant Professor/Associate Professor/Professor grade.

Terms of reference:

i. The committee shall meet once each semester, soon after the semester results are published.
ii. The committee calculates the attainment based on the results of both formative and summative assessments of each semester and reviews the same.
iii. Interact with faculty in case of courses with low attainment and recommend corrective measures for improvement.
iv. Auditing the question papers of both sessional exams and summative assessments and suggesting improvements wherever required.
v. Analyze the feedback collected from the students every semester.
14. Practice School

Practice school is an essential component of pharmacy education that offers students an opportunity to acquire practical skills in various settings such as hospitals, pharmacies, industries and research labs. The objective of practice school is to bridge the gap between theoretical knowledge and practical application in the real world. A comprehensive understanding of the definition, scope, and objectives of Practice School is given below.

Scope of Practice School:
The scope of Practice School is to provide students with a comprehensive learning experience that goes beyond classroom lectures. Students are exposed to real-world scenarios that challenge their problem-solving skills and enhance their ability to make decisions. The program provides students with an opportunity to interact with patients, healthcare professionals, and researchers, which helps them to develop their communication skills. Practice School is an essential component of pharmacy education that provide students with a comprehensive learning experience that goes beyond classroom lectures. The program is designed to help students acquire practical skills, bridge the gap between theory and practice, expose them to real-world scenarios, enhance their communication skills, and evaluate their performance.

The objectives of Practice School are to:

- Develop practical skills: The program is designed to help students acquire practical skills that are essential in their chosen field of specialization.
- Bridging the gap between theory and practice: The program provides students with an opportunity to apply their theoretical knowledge in a practical setting.
- Exposure to real-world scenarios: The program exposes students to real-world scenarios that challenge their problem-solving skills and decision-making ability.
- Enhance communication skills: The program provides students with an opportunity to interact with patients, healthcare professionals, and researchers, which helps them to develop their communication skills.
- Working independently and as a team: Students get a feel of a real-life work environment and develop the ability to work independently and as a team.
- Identifying strengths and weaknesses: It also creates awareness among students about their strengths and weaknesses.

15. Practice School in the seventh semester

Practice School is a two-month program during the VII Semester in a hospital/community pharmacy to provide students with hands-on experience in pharmacy services. The program is designed to help students understand the daily operations of the pharmacy and develop skills in dispensing medication, counseling patients, and managing drug inventory.
Advanced Practice School and Research Project in the eighth semester

Advanced Practice School and Research Project is a four-month program conducted during the semester VIII of study that allows students to choose a specialization in the industry, hospital/ community pharmacy, or research department. The program is designed to give students an opportunity to apply their theoretical knowledge in a practical setting and gain hands-on experience in their chosen field of specialization. The students can opt for any two of the above three for a duration of two months each.

During the Advanced Practice School and Research Project, students are required to identify a real-life problem in their field of specialization and conduct a research project in any of the selected two options to find a solution to the problem. The research project is a mandatory component of the program, and students are expected to submit a report on their findings. The research project component of Practice School is designed to help students develop research skills, critical thinking, and problem-solving skills. It also helps students to apply the knowledge gained during the program to real-life situations and find practical solutions to problems in their field of specialization.

The Scope of the Research project:

The scope of a research project involves investigating a specific area of pharmacy, such as drug design and development, clinical pharmacy, pharmacology, pharmaceutical technology, sales and marketing. The goal of the research project is to advance knowledge in the field, address a specific research question or hypothesis, and contribute to the improvement of patient care. It is important for the research project to be feasible, ethical, and relevant to the current issues and challenges in pharmacy.

The objectives of the Research project are to:

- Acquire research skills: Conducting a research project requires a range of research skills, such as literature review, data collection, data analysis, and interpretation of results. These skills are transferable and can be applied in various fields beyond pharmacy.

- Develop scientific writing skills: The research project provides an opportunity to develop scientific writing skills, including how to write an introduction, methods, results and discussion sections of a research paper, as well as how to prepare a bibliography.

- Enable critical thinking ability: Research projects in pharmacy require critical thinking and analysis, which involve evaluating and interpreting data, drawing conclusions, and making evidence-based recommendations.

- Adopt application-oriented learning: The research project provides an opportunity to apply the knowledge and skills learned in coursework to real-world scenarios. Students can investigate a current issue or challenge in pharmacy and propose practical solutions.

- Appreciate time management and organizational skill: Conducting a research project requires planning, time management, and organization skills. Students learn how to prioritize tasks, set realistic goals, and manage their time effectively.

- Enhance communication skills: Students can develop their communication skills by presenting their research findings to peers and faculty members, writing a research paper, and preparing a poster/oral presentation.

- Follow ethical considerations: Research projects in pharmacy require students to consider
ethical issues, such as confidentiality, informed consent, and the protection of human subjects. Students can learn about ethical guidelines and best practices in conducting research. Overall, a research project in pharmacy provides an excellent opportunity for students to acquire a wide range of skills and competencies that are valuable for their future careers, whether in pharmacy services, academia, or research.

Evaluation and grading: The evaluation includes continuous assessment and final evaluation by the site preceptor and the school-level committee respectively. The final evaluation is done through a presentation mode, where students are required to present their practice school activities to the committee of experts in their field of specialization. In the case of Practice School of 7th semester, a report shall be submitted by the student. A committee will evaluate the report based on the tasks accomplished during the practice school including prescription reading, prescription handling, patient counseling, drugs dispensed, their indications, category, dosing etc. In case of the Advanced Practice School and Research Project of 8th semester, a report in the form of a thesis shall be submitted. The committee will evaluate the report based on the relevance of the problem, the methodology used to find the solution, the effectiveness of the solution, the overall quality of the report etc. The total marks as well as the different criteria for the formative and summative assessment of Advanced Practice School and Research Project are given below.

The summative assessment of Practice School, Advanced Practice School & Research Project can be done on the following criteria.

Formative Assessment of Practice School:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regularity and enthusiasm</td>
<td>5 Marks</td>
</tr>
<tr>
<td>Skills acquired in day-to-day activities</td>
<td>10 Marks</td>
</tr>
<tr>
<td>Ability to learn and apply new concepts</td>
<td>10 Marks</td>
</tr>
<tr>
<td>Problem solving skills</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>25 Marks</td>
</tr>
</tbody>
</table>

Formative Assessment of Advanced Practice School & Research Project:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regularity and enthusiasm</td>
<td>10 Marks</td>
</tr>
<tr>
<td>Skills acquired in day-to-day activities</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Ability to learn and apply new concepts</td>
<td>10 Marks</td>
</tr>
<tr>
<td>Problem-solving skills</td>
<td>10 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>50 Marks</td>
</tr>
</tbody>
</table>

Summative Assessment of Practice School:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective(s) & Methodology</td>
<td>5 Marks</td>
</tr>
<tr>
<td>Outcomes</td>
<td>10 Marks</td>
</tr>
<tr>
<td>Presentation of work & Question and answer</td>
<td>10 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>25 marks</td>
</tr>
</tbody>
</table>
Summative Assessment of Advanced Practice School & Research project:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective(s) & Methodology</td>
<td>15</td>
</tr>
<tr>
<td>Results, Discussions & Conclusions/Outcomes</td>
<td>15</td>
</tr>
<tr>
<td>Presentation of work & Question and answer</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

17. Condonation under exceptional cases:
If the attendance of a student falls short of 80% in any course, due to continuous absence caused by accident, prolonged illness, or unforeseen circumstances, such case may be considered by the Principal for condonation of absence based on the request of the student supported by the recommendation of the respective faculty advisor. However, in such cases, the student must have duly applied for leave in time. The overall attendance of a student in such a case shall not fall below 70%. Condonation will be considered only in the case of those students who have proved themselves to be otherwise regular, by attending at least 80% of the classes during the semester, excluding the period of long leave.

At least 70% physical presence is mandatory in every course even in such exceptional cases and this provision can be exercised by a student, only once in the program. However, the student may apply for a second condonation in the final year (8th semester) provided he or she does not have any arrears.

Condonation cannot be claimed as a matter of right. It shall be granted at the discretion of the authorities, based on the genuineness and validity of the reasons cited for the absence. A student is not eligible for condonation if he had any unauthorized absence during the semester.

18. Examinations/Assessments
The scheme for formative assessment and summative assessment is given in Table–XI.

18.1. Formative assessment

The formative assessment includes sessional exams, cycle tests, and assignments. There shall be two formative assessments (FA1 & FA2) and the marks of the cycle tests of FA1 and FA2 shall be submitted 10 days before the first and second sessional examination respectively. There shall be a minimum of two cycle tests per FA. The cycle test shall include questions of any type similar to that of end semester examination pattern. Students can be divided into groups of 5 or 6 students each and they shall submit an assignment on a specific topic which can be decided by the subject in charge at the beginning of the semester. The assignment topic shall be different for different groups. The average of FA1 and FA2 is to be considered as the formative assessment. In the case of practical courses included in CGPA calculation, 5 marks can be allotted to day-to-day assessment.

18.1.1. Sessional Exams

Two Sessional exams shall be conducted for theory and one sessional exam for practical courses as per the schedule fixed by the school. In case a student misses one sessional examination due to any medical emergency, he/she can attend a re-sessional examination covering the entire syllabus of the subject conducted before the summative assessments. The
scheme of question papers for theory and practical Sessional examinations is given below.
The average marks of two formative assessments shall be computed for internal assessment as per the requirements given in tables -XI and XII.
For courses included in CGPA calculations, the sessional exam shall be conducted for 30 marks for theory and 35 marks for practical. The sessional exam shall be conducted for 20 marks for theory and 25 marks for practical in case of courses having school-level exams.

Question Paper pattern

Question paper pattern for theory Sessional examinations (as per blooms taxonomy)

For courses included in CGPA calculations:

I. **Multiple Choice Questions (MCQs)**

 (Answer all the questions)

 \[= 10 \times 1 = 10 \text{ marks}\]

II. **Long Answers**

 \[= 1 \times 10 = 10 \text{ marks}\]

III. **Short Answers**

 \[= 2 \times 5 = 10 \text{ marks}\]

\[\text{Total} = 30 \text{ marks}\]

For courses having school level exams:

I. **Long Answers**

 \[= 1 \times 10 = 10 \text{ marks}\]

II. **Short Answers**

 \[= 2 \times 5 = 10 \text{ marks}\]

\[\text{Total} = 20 \text{ marks}\]

Question paper pattern for Practical Sessional examinations

For courses included in CGPA calculations:

I. **Synopsis**

 \[= 5 \text{ marks}\]

II. **Experiments**

 \[= 20 \text{ marks}\]

III. **Viva voce**

 \[= 10 \text{ marks}\]

\[\text{Total} = 35 \text{ marks}\]

For courses having school level practical exams:

I. **Synopsis**

 \[= 5 \text{ marks}\]

II. **Experiments**

 \[= 15 \text{ marks}\]

III. **Viva voce**

 \[= 5 \text{ marks}\]

\[\text{Total} = 25 \text{ marks}\]
18.2. Summative assessment
The summative assessment for each theory and practical course through semesters I to VII shall be conducted by the university except for the courses with the asterisk symbol (*) in table I -IX for which examinations shall be conducted by the subject experts at school level. The grades from school-level examinations are not included in CGPA calculation but the same shall be included separately in the grade sheets of the respective semesters. The grades of all value added and skill based elective courses received throughout the program shall be included in the eighth-semester grade sheet.
Semester I

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Formative assessment</th>
<th>Assignment</th>
<th>Attendance</th>
<th>Total Marks</th>
<th>Summative assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP101T</td>
<td>Human Anatomy and Physiology I–Theory</td>
<td>FA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Cycle Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP102T</td>
<td>Pharmaceutical Analysis I–Theory</td>
<td>FA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Cycle Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP103T</td>
<td>Pharmaceutics I–Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP104T</td>
<td>Pharmaceutical Inorganic Chemistry–Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>HUM</td>
<td>BP105T</td>
<td>Communication skills–Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1 hr</td>
<td></td>
<td>20</td>
<td>1 hr</td>
<td>-</td>
</tr>
<tr>
<td>SCI</td>
<td>BP106</td>
<td>Remedial Biology/Remedial Mathematics –Theory*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RBT/RMT</td>
<td></td>
<td>20</td>
<td>1 hr</td>
<td></td>
<td>20</td>
<td>1 hr</td>
<td>-</td>
</tr>
<tr>
<td>HUM</td>
<td>22ADM101</td>
<td>Foundations of Indian Heritage –Theory*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1 hr</td>
<td></td>
<td>20</td>
<td>1 hr</td>
<td>-</td>
</tr>
<tr>
<td>HUM</td>
<td>22AVP103</td>
<td>Mastery Over Mind–Theory*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>1 hr</td>
<td></td>
<td>20</td>
<td>1 hr</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>200</td>
<td>10 hrs</td>
<td>40</td>
<td>200</td>
<td>10 hrs</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Formative assessment</th>
<th>Attendance</th>
<th>Total Marks</th>
<th>Summative assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP109P</td>
<td>Pharmaceutical Analysis I–Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>4 hrs</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP110P</td>
<td>Pharmaceutics I–Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>4 hrs</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP111P</td>
<td>Pharmaceutical Inorganic Chemistry–Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>4 hrs</td>
</tr>
<tr>
<td>HUM</td>
<td>BP112P</td>
<td>Communication skills–Practical*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td>25</td>
<td>3 hrs</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>130</td>
<td>30</td>
<td>15</td>
<td>150</td>
<td>175</td>
</tr>
</tbody>
</table>

Applicable ONLY for the students appearing for Remedial Biology(RB)/Remedial Mathematics(RM)course.

*School level exam (non CGPA)
<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Formative assessment</th>
<th>Summative assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FA1</td>
<td>Assignment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FA2</td>
<td>Attendance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Marks</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP201T</td>
<td>Human Anatomy and Physiology II–Theory</td>
<td>30 1.5 hrs 10</td>
<td>30 1.5 hrs 10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP202T</td>
<td>Pharmaceutical Organic Chemistry I–Theory</td>
<td>30 1.5 hrs 10</td>
<td>30 1.5 hrs 10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP203T</td>
<td>Biochemistry–Theory</td>
<td>30 1.5 hrs 10</td>
<td>30 1.5 hrs 10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP204T</td>
<td>Pharmaceutical Engineering–Theory</td>
<td>30 1.5 hrs 10</td>
<td>30 1.5 hrs 10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP205T</td>
<td>Computer Applications in Pharmacy–Theory*</td>
<td>20 1 hr -</td>
<td>20 1 hr -</td>
</tr>
<tr>
<td>HUM</td>
<td>22ADM111</td>
<td>Glimpses of Glorious India - Theory*</td>
<td>20 1 hr -</td>
<td>20 1 hr -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*School level exam (non CGPA)
Formative assessment

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>FA1</th>
<th>FA2</th>
<th>Assignment</th>
<th>Attendance</th>
<th>Total Marks</th>
<th>Summative assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Cycle Test</td>
<td>Sessional</td>
<td>Cycle Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Marks</td>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP301T</td>
<td>Pharmaceutical Organic Chemistry II–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>30</td>
<td>1.5 hrs</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP302T</td>
<td>Physical Pharmaceutics I–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>30</td>
<td>1.5 hrs</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP303T</td>
<td>Pharmaceutical Microbiology–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>30</td>
<td>1.5 hrs</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP304T</td>
<td>Pathophysiology–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>30</td>
<td>1.5 hrs</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP305T</td>
<td>Pharmacognosy and Phytochemistry I–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>30</td>
<td>1.5 hrs</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP306T</td>
<td>Social & Preventive Pharmacy–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>30</td>
<td>1.5 hrs</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>HUM</td>
<td>BP307T</td>
<td>Environmental sciences–Theory*</td>
<td>20</td>
<td>1 hr</td>
<td>-</td>
<td>20</td>
<td>1 hr</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>HUM</td>
<td></td>
<td>Amrita Vaulue Programme I</td>
<td>20</td>
<td>1 hr</td>
<td>-</td>
<td>20</td>
<td>1 hr</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>220</td>
<td>11 hrs</td>
<td>60</td>
<td>220</td>
<td>11 hrs</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

*School level exam (non CGPA)
<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Formative assessment FA1</th>
<th>Formative assessment FA2</th>
<th>Summative assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Cycle Test</td>
<td>Sessional</td>
<td>Cycle Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Marks</td>
<td>Duration</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP401T</td>
<td>Pharmaceutical Organic Chemistry III–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP402T</td>
<td>Medicinal Chemistry I–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP403T</td>
<td>Physical Pharmaceutics II–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP404T</td>
<td>Pharmacology I–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP405T</td>
<td>Pharmacognosy and Phytochemistry II–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP406T</td>
<td>Pharmaceutical Jurisprudence–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>HUM</td>
<td></td>
<td>Amrita Value Programme II</td>
<td>20</td>
<td>1 hr</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>10 hrs</td>
<td>60</td>
<td>10 hrs</td>
</tr>
</tbody>
</table>

*School level exam (non CGPA)

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Formative assessment</th>
<th>Summative assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Day to Day assessment</td>
<td>Attendance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Day to Day assessment</td>
<td>Attendance</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP408P</td>
<td>Physical Pharmaceutics II–Practical</td>
<td>35</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP409P</td>
<td>Pharmacognosy and Phytochemistry II–Practical</td>
<td>35</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Category</td>
<td>Course code</td>
<td>Name of the course</td>
<td>Formative assessment</td>
<td>Summative assessment</td>
<td>Total Marks</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FA1</td>
<td>FA2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Sessional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FA1</td>
<td>FA2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Sessional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assignment</td>
<td>Attendance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Marks</td>
<td>Total Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP501T</td>
<td>Medicinal Chemistry II–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP502T</td>
<td>Pharmaceutical Biotechnology–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP503T</td>
<td>Pharmacology II–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP504T</td>
<td>Herbal Drug Technology–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP505T</td>
<td>Industrial Pharmacy I–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP506T</td>
<td>Pharmacy Practice–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>HUM</td>
<td>BP507T</td>
<td>Life Skill I–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>210</td>
<td>10.5</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Formative assessment</th>
<th>Summative assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Day to Day</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Attendance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>PHAR</td>
<td>BP508P</td>
<td>Pharmacology II–Practical</td>
<td>35</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP509P</td>
<td>Herbal Drug Technology–Practical</td>
<td>35</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP510P</td>
<td>Industrial Pharmacy I–Practical</td>
<td>35</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>105</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Category</td>
<td>Course code</td>
<td>Name of the course</td>
<td>Sessional</td>
<td>Cycle Test</td>
<td>Assignment</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formative assessment</td>
<td>FA1</td>
<td>FA2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Marks</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP601T</td>
<td>Medicinal Chemistry III–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP602T</td>
<td>Pharmacology III–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP603T</td>
<td>Biopharmaceutics and Pharmacokinetics–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP604T</td>
<td>Industrial Pharmacy II–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP605T</td>
<td>Quality Assurance–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP606T</td>
<td>Pharmacotherapeutics– Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td>HUM</td>
<td>BP607T</td>
<td>Life Skill II–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>210</td>
<td>10.5</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Sessional</th>
<th>Day to Day assessment</th>
<th>Attendance</th>
<th>Total Marks</th>
<th>Summative assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Formative assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Day to Day assessment</td>
<td>Attendance</td>
<td>Total Marks</td>
<td>Marks</td>
<td>Duration</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP608P</td>
<td>Medicinal chemistry III–Practical</td>
<td>35</td>
<td>10</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>4 hrs</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP609P</td>
<td>Pharmacology III– Practical</td>
<td>35</td>
<td>10</td>
<td>5</td>
<td>50</td>
<td>50</td>
<td>4 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>8hrs</td>
</tr>
</tbody>
</table>

26
<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Formative assessment</th>
<th>Assignment</th>
<th>Attendance</th>
<th>Total Marks</th>
<th>Summative assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FA1</td>
<td>FA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Cycle Test</td>
<td>Sessional</td>
<td>Cycle Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Marks</td>
<td>Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instrumental Methods of Analysis–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP701T</td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP702T</td>
<td>Novel Drug Delivery System–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP703T</td>
<td>Biostatistics and Research Methodology–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP704ET</td>
<td>Pharma Marketing Management–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP705ET</td>
<td>Pharmaceutical Regulatory Science–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP706ET</td>
<td>Cosmetic Science–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP707ET</td>
<td>Computer Aided Drug Design–Theory</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP708ET</td>
<td>Pharmacovigilance–Theory</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP709ET</td>
<td>Cell and Molecular Biology–Theory</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP710ET</td>
<td>Experimental Pharmacology–Theory</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP711ET</td>
<td>Quality Control and Standardization of Herbs Theory</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP712ET</td>
<td>Dietary Supplements and Nutraceuticals–Theory</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUM</td>
<td>BP713T</td>
<td>Life Skill III–Theory</td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.5 hrs</td>
<td>10</td>
<td>1.5 hrs</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 180 9 hrs 60 180 9 hrs 60 30 30 300 300 12 hrs 600

The subject experts at the school level shall conduct examinations
<table>
<thead>
<tr>
<th>Category</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Formative assessment</th>
<th>Summative assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td>Day to Day assessment</td>
<td>Attendance</td>
</tr>
<tr>
<td>PHAR</td>
<td>BP714P</td>
<td>Instrumental Methods of Analysis- Practical</td>
<td>35</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>35</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cat.</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Formative Assessment</th>
<th>Summative Assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP716PS</td>
<td>Practice School</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

Semester VIII

<table>
<thead>
<tr>
<th>Cat.</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Formative Assessment</th>
<th>Summative Assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAR</td>
<td>BP801PR</td>
<td>Advanced Practice School& Research Project</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>
Table XII:- Value added and Skill based Electives

<table>
<thead>
<tr>
<th>Name of the course</th>
<th>Formative Assessment</th>
<th>Summative Assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FA1</td>
<td>FA2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Sessional</td>
</tr>
<tr>
<td>Value added CGPA courses (Theory)</td>
<td>30</td>
<td>1.5hrs</td>
<td>10</td>
</tr>
<tr>
<td>Value added non CGPA courses (Theory)</td>
<td>20</td>
<td>1hr</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of the course</th>
<th>Formative Assessment</th>
<th>Summative Assessment</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sessional</td>
<td>Day to Day assessment</td>
<td>Attendance</td>
</tr>
<tr>
<td>Skill development CGPA courses (Practical)</td>
<td>35</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
Table-XIII: Guidelines for the allotment of marks for attendance

<table>
<thead>
<tr>
<th>Percentage of Attendance</th>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>95– 100</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>90– 94</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>85– 89</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>80– 84</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Less than 80</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

19. **Promotion and award of grades**

A student shall be declared a Pass and eligible for getting a grade in a course of B. Pharm program if he/she secured an aggregate of 50% with a minimum of 40% marks each in formative and summative assessments. For example, to be declared as PASS and to get a grade, the student has to secure a minimum of 20 marks in the formative assessment and 20 marks in the summative assessment of theory examinations and a minimum of 20 marks each in the formative and summative assessment of practical examinations.

20. **Carry forward of marks**

In case a student fails to secure the minimum 50% in any Theory or Practical course as specified in 18, then he/she shall reappear for the next university examination of that course. However, his/her marks of the formative Assessment shall be carried over and he/she shall be entitled for the grade obtained by him/her on passing the summative assessment examination.

21. **Supplementary examination of summative assessment**

Supplementary examinations of summative assessment shall be conducted as per the schedule given in table XIV. The exact dates of examinations shall be notified from time to time.

Table-XIV: Tentative schedule of summative assessments

<table>
<thead>
<tr>
<th>Semester</th>
<th>for Regular Candidates</th>
<th>for Failed Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, III, V and VII</td>
<td>November/December</td>
<td>May/June</td>
</tr>
<tr>
<td>II, IV, VI and VIII</td>
<td>May/June</td>
<td>November/December</td>
</tr>
</tbody>
</table>
Question paper pattern for summative theory examinations (as per blooms taxonomy)
For courses included in CGPA calculations:

I. Multiple Choice Questions (MCQs)(Answer all the questions) = 20x1=20 marks
II. Long Answers = 1x10=10 marks
III. Short Answers = 4x5=20 marks

Total = 50 marks

For courses having school level exams:

I. Long Answers = 1x10=10 marks
II. Short Answers = 5x3=15 marks

Total = 25 marks

Question paper pattern for summative assessment of practical examinations

I. Synopsis = 10 marks
II. Experiments = 25 marks
III. Viva voce = 15 marks

Total = 50 marks

Question paper pattern for courses having school level exams:

I. Synopsis = 5 marks
II. Experiments = 15 marks
III. Viva voce = 5 marks

Total = 25 Marks

22. Eligibility of Examiners & Question Paper Setters

Faculty of Amrita School of Pharmacy who are handling the respective courses with a minimum of 2 years of experience / Ph.D shall be appointed as examiners/Question paper setters for semester I to semester IV B. Pharm examination and teachers with a minimum of 3 years’ experience / Ph.D shall be appointed as examiners/Question paper setters for the remaining semesters.
External faculty members of reputed universities with relevant teaching experience shall be appointed by the Addl. Controller of Examinations as observers. During the end semester practical examinations, such observers shall be appointed for selected courses randomly in every semester who shall oversee the conduct of the practical examination, verify the practical records, theory QP etc., and submit a report in the prescribed format to the Addl. Controller of Examinations. Faculty with a minimum of 5 years of teaching experience in the concerned subject of B.Pharm shall be appointed as observers. One external faculty shall serve as an observer for exams of 2 or 3 courses of B.Pharm if scheduled on the same day or adjacent days.

23. **Academic Progression**

No student shall be admitted to any examination unless he/she fulfills the norms specified in 6.

Academic progression rules are applicable as follows:

A student shall be eligible to carry forward all the courses of I, II and III semesters till the IV semester examinations. However, he/she shall not be eligible to attend the courses of V semester until all the courses of the I and II semesters are successfully completed.

Similarly, a student shall be eligible to carry forward all the courses of III, IV and V semesters till the VI semester examinations. However, he/she shall not be eligible to attend the courses of the VII semester until all the courses of the I, II, III, and IV semesters are successfully completed.

A student shall be eligible to carry forward all the courses of V, VI and VII semesters till the VIII semester examinations. However, he/she shall not be eligible to get the course completion certificate until all the courses of I, II, III, IV, V and VI semesters are successfully completed.

A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to VIII semesters within the stipulated time period as per the norms specified in 29.

A lateral entry student shall be eligible to carry forward all the courses of III, IV and V semesters till the VI semester examinations. However, he/she shall not be eligible to attend the courses of VII semester until all the courses of III and IV semesters are successfully completed.

A lateral entry student shall be eligible to carry forward all the courses of V, VI and VII semesters till the VIII semester examinations. However, he/she shall not be eligible to get the course completion certificate until all the courses of III, IV, V and VI semesters are successfully completed.

A lateral entry student shall be eligible to get his/her CGPA upon successful completion of the courses of III to VIII semesters within the stipulated time period as per the norms specified in 29.

Note: Grade I as well as those students who fail to register for examination(s) of any course in any semester will be treated as grade F for deciding academic progression.
24. Grading of performances

24.1. Letter grades and grade points allocations:
Based on the performances, each student shall be awarded a 10 point relative letter grading at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table– XV.

Table – XV: Letter grades and grade points

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Grade Point</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>10</td>
<td>Excellent</td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td>Very Good</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>Fair</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>Average</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>Pass</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>Incomplete</td>
</tr>
</tbody>
</table>

A learner who remains absent for the summative assessment shall be assigned a letter grade of I and a corresponding grade point of zero. He/she should reappear for the said examination/evaluation in due course.

24.2. The Semester grade point average (SGPA)

The performance of a student in a semester is indicated by a number called ‘Semester Grade Point Average’ (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses (Theory/Practical) in a semester with credits C_1, C_2, C_3, C_4, and C_5 and the student’s grade points in these courses are G_1, G_2, G_3, G_4, and G_5, respectively, and then students’ SGPA is equal to:

$$\text{SGPA} = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4 + C_5G_5}{C_1 + C_2 + C_3 + C_4 + C_5}$$

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and AB grade awarded in that semester. For example, if a learner has a F or I grade in course 4, the SGPA shall then be computed as:

$$\text{SGPA} = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4 \times \text{ZERO} + C_5G_5}{C_1 + C_2 + C_3 + C_4 + C_5}$$
24.3. Cumulative Grade Point Average. (CGPA)

The CGPA is calculated with the SGPA of all the VIII semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all VIII semesters and their courses. The CGPA shall reflect the failed status in case of F grade(s), till the course(s)is/are passed. When the course(s)is/are passed by obtaining pass grade on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

\[
\text{CGPA} = \frac{C_1S_1+C_2S_2+C_3S_3+C_4S_4+C_5S_5+C_6S_6+C_7S_7+C_8S_8}{C_1+C_2+C_3+C_4+C_5+C_6+C_7+C_8}
\]

where \(C_1, C_2, C_3,...\) is the total number of credits for semester I,II,III,…, and \(S_1,S_2, S_3,...\) is the SGPA of semester I,II,III,…..

25. Declaration of class

The class shall be awarded based on CGPA as follows:

First Class with Distinction = CGPA of 7.50 and above
First Class = CGPA of 6.00 to 7.49
Second Class = CGPA of 5.00 to 5.99

26. Improvement of Internal marks

A student who fails in university examination in the first attempt can apply for improvement sessional exam by submitting the duly filled application form when notified by the Principal.

27. Revaluation

A failed student shall have the right to apply for revaluation of the theory paper by filling the application form along with the required fees within the stipulated time after the publication of the result.

28. Award of Ranks

Ranks and Medals shall be awarded based on the final CGPA. However, candidates who fail in one or more courses during the B. Pharm program shall not be eligible for the award of ranks. Moreover, the candidates should have completed the B. Pharm program in a minimum prescribed number of years, (four years/ three years for B. Pharm Lateral entry) for the award of Ranks.

29. Award of degree

Candidates who fulfill the requirements mentioned above shall be eligible for award of degree during the ensuing convocation.
30. **Duration for completion of the program of study**

The duration for the completion of the program shall be fixed as double the actual duration (eight academic years) of the program and the students have to pass within the said period, otherwise they have to get fresh Registration. There shall not be any supplementary batch for any semester.

31. **Re-admission after break of study**

A candidate who seeks readmission to the program after a break of study has to get approval from the principal by making a written request. Readmission will not be permitted for the candidate who has more than 2 years of breakup period.

Note:

Point No 22 which describes the eligibility of the examiners and question paper setters shall be applicable to all the current batches of B. Pharm w.e.f AY 2023-24 and as per it, faculty of Amrita School of Pharmacy who are handling the respective courses with a minimum of 2 years of experience / Ph.D shall be appointed as examiners/Question paper setters for semester I to semester IV B. Pharm examination and teachers with a minimum of 3 years’ experience / Ph.D shall be appointed as examiners/Question paper setters for the remaining semesters.
SEMESTER-I
SCOPE:

The course primary goal is to learn how the different bodily systems work together to maintain homeostasis. By understanding the interconnected mechanisms involved in homeostasis, students can appreciate how various processes are controlled and balanced within the body. It provides the foundation necessary to comprehend pathophysiology and pharmacology. It helps students to develop the skills to determine various body parameters that provide insights into an individual's health status.

These skills are important for healthcare professionals to diagnose, monitor, and treat patients effectively. Furthermore, a solid understanding of this subject empowers individuals to support the healthcare system and educate the general public about various aspects of health.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

- **K1**: State the anatomical and physiological terms associated with the human body
- **K2**: Describe the physiological process involved in the homeostasis of the human body
- **K3**: Appreciate the interlinked mechanisms involved in the homeostasis of the human body
- **K4**: Summarize the disorders that affect various organs of the human body
- **K5**: Differentiate the histology of tissues and organs of the human body
- **K6**: Demonstrate the coordinated working pattern of different organs of each system

SKILL

- **S1**: Distinguish the various tissues and organs of the human body
- **S2**: Compute cardiac output based on given haemodynamic values
- **S3**: Assess potential risks and complications associated with mismatched blood transfusions.
- **S4**: Interpret the laboratory values of humans associated with various diseases states related to blood, CVS, bone and Urinary system
- **S5**: Apply knowledge of skeletal anatomy and biomechanics to enhance performance in sports and physical activities.
- **S6**: Predict common skeletal injuries, such as fractures, dislocations, and sprains.

ATTITUDE

- **A1**: Appreciate the knowledge of Anatomy and Physiology for studying pathophysiology and pharmacology

<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Anatomy and Physiology I (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>I</td>
<td>BP101T</td>
</tr>
</tbody>
</table>
A2 : Demonstrate interest, enthusiasm, and willingness to learn as seen through active participation.
A3 : Support other healthcare professionals/fellow people in educating the society.
A4 : Exhibit professionalism in the working environment.
A5 : Participate in healthcare initiatives by the government.
A6 : Embrace the newer advancements in the healthcare

COURSE CONTENTS

UNIT I 6 Hours

Introduction
Definition and scope of anatomy and physiology, levels of structural organization and body systems, basic life processes, homeostasis, and basic anatomical terminology. (1 hr)

Cellular level of organization (2 hrs)
Biological importance of a cell and organelles,
General principles of cell communication, intracellular signalling pathway activation by extracellular signal molecule,
Forms of intracellular signalling: a) Contact-dependent b) Paracrine c) Synaptic d) Endocrine

Tissue level of organization (3 hrs)
Classification of tissues, structure, location, and functions of epithelial, muscular, nervous, and connective tissues.

UNIT II 6 Hours

Integumentary System

Integumentary system - Structure and functions of skin, (2 hrs)

Skeletal system (3 hrs)
Divisions of the skeletal system, types of bone, salient features, and functions of bones of the axial and appendicular skeletal system

Organization of skeletal muscle, physiology of muscle contraction,

Joints (2 hrs)
Structural and functional classification, types of joints movements, and their articulation

UNIT III 8 Hours

Circulatory System

Body fluids (3 hrs)
Body fluids, composition, and blood functions, hemopoiesis, haemoglobin formation, coagulation mechanisms,

Blood grouping, Rh factors, transfusion, and its significance. Reticuloendothelial system. (2 hrs)

Lymphatic system (3 hrs)
Lymphatic organs and tissues with special reference to spleen, thymus, lymph node & payer's patches, lymphatic vessels, lymph circulation, and functions of the lymphatic system
UNIT IV 6 Hours

Cardiovascular System
Heart – anatomy of heart, blood circulation, blood vessels. (2 hrs)
elements of the conduction system of the heart (1 hr)
Cardiac output, cardiac cycle. (2 hrs)
Regulation of blood pressure, pulse, electrocardiogram (1 hr)

UNIT V 4 Hours

Urinary System
Anatomy of the urinary tract with special reference to the anatomy of kidney and nephrons (2hrs)
Physiology of urine formation, micturition reflex and role of kidneys in acid-base balance, Role of RAAS in kidney (2 hrs)

TEXTBOOKS:

REFERENCE BOOKS:

Latest edition of the text books & reference books can be referred.
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Analysis-I (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>I</td>
<td>BP102T</td>
</tr>
<tr>
<td>Pharmaceutical Analysis-I (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>I</td>
<td>BP109P</td>
</tr>
</tbody>
</table>

SCOPE:
The course provides a comprehensive understanding of the analytical techniques and methods used in the pharmaceutical analysis to ensure the quality, safety, and efficacy of drugs.

The course focuses on the basic principles and procedures behind the conventional qualitative and quantitative methods of analysis. It mainly focuses on different types of titrimetric analysis such as acid-base titration, precipitation titration, complexometric titration, diazotisation titration and various types of redox titration. The subject also introduces the fundamentals of electrochemical and gravimetric analysis of drugs.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student shall be able to:

KNOWLEDGE

K1: Describe the definitions, scope and classifications of pharmaceutical analysis
K2: Discuss the fundamental principles behind the qualitative and quantitative analysis
K3: Explain the basic concepts of electrochemical methods and its applicability in qualitative and quantitative analysis.
K4: Describe the fundamentals of the gravimetric analysis and study different parameters influencing the purity of precipitate.
K5: Illustrate the principles behind volumetric analysis
K6: Apply the fundamental methodology for preparing standard solutions.

SKILL

S1: Demonstrate hands-on experience with standard analytical reagents, glass-ware and laboratory instruments.
S2: Perform the preparation of different standard solutions by volumetric method.
S3: Perform the assay of different drugs by volumetric analysis.
S4: Employ electrochemical methods of analysis
S5: Develop skills in pharmaceutical analytical sample preparation and handling different pharmaceutical substances.
S6: Get expertise in handling analytical instruments such as conductometer
ATTITUDE
A1: Develop a high level of professional and ethical code of approach towards analytical practices.
A2: Strengthens the problem solving abilities by involving in various complex sample analysis protocols and troubleshooting the issues that arise during the analysis process.
A3: Impart critical thinking skills, analytical calculations require critical thinking skills to interpret the results.
A4: Provides a positive attitude towards inquiry, analysis, and evidence-based decision-making
A5: Exhibit professionalism in the working environment.
A6: Inspire students to pursue further research and innovation in pharmaceutical analysis, fostering a positive attitude towards creativity, exploration, and staying updated with advancements in the field.

COURSE CONTENTS

UNIT I 5 Hours
Pharmaceutical Analysis-Definition and Scope
Different techniques of analysis (1hr)
Primary and secondary standards. (1hr)
Errors:
Sources of errors, types of errors, methods of minimizing errors (1hr)
Accuracy, precision and significant figures (1hr)
Methods of expressing concentration:
Calculation of number of moles, molarity, normality, molality, percentage concentration, parts per million and serial dilution. (1hr)

UNIT II 6 Hours
Basic Titrmetric Analysis
Acid base titration:
Theories of acid base indicators (1hr)
Classification of acid base titrations (1hr)
Theory involved in titrations of strong, weak, and very weak acids and bases, neutralization curves. (1 hr)
Selection of indicators in acid base titration (1 hr)
Non aqueous titration:
Solvents (1 hr)
Estimation of Sodium benzoate and Ephedrine HCl. (1 hr)

UNIT III 7 Hours
Miscellaneous Titrmetric Analysis
Precipitation titrations: Basic principles and classification, Mohr’s method, Volhard’s, Modified Volhard’s, Fajans method. (2 hrs)
Complexometric titration: Classification, metal ion indicators, masking and demasking reagents. (2 hrs)
Gravimetry: Principle and steps involved in gravimetric analysis. Purity of the precipitate: co-precipitation and post precipitation (2 hrs)
Diazotisation titration: Basic principles, methods and applications (1 hr)

UNIT IV 5 Hours
Redox Titrations
Concepts of oxidation and reduction (2 hrs)
Types of redox titrations (principles and applications)
Cerimetry, Iodimetry, Iodometry, Bromatometry, Dichrometry, Titration with potassium iodate (3 hrs)

UNIT V 7 Hours
Electrochemical Methods of Analysis
Conductometry - Introduction, Conductivity cell, Conductometric titrations, applications. (1 hr)
Potentiometry - Electrochemical cell, construction and working of reference and indicator electrodes, methods to determine end point of potentiometric titration and applications. (3 hrs)
Polarography - Principle, Ilkovic equation, construction and working of dropping mercury electrode and rotating platinum electrode, applications (3 hrs)

LIST OF EXPERIMENTS

I. Preparation and standardization of
 1. Sodium hydroxide
 2. Sulphuric acid
 3. Sodium thiosulfate
 4. Potassium permanganate
 5. Ceric ammonium sulphate

II. Assay of the following compounds along with Standardization of Titrant
 1. Ammonium chloride by acid base titration
 2. Ferrous sulphate by Cerimetry
 3. Copper sulphate by Iodometry
 4. Calcium gluconate by complexometry
 5. Hydrogen peroxide by Permanganometry
 6. Sodium benzoate by non-aqueous titration
 7. Sodium Chloride by precipitation titration

III. Determination of Normality by electro-analytical methods
 1. Conductometric titration of strong acid against strong base
 2. Conductometric titration of strong acid and weak acid against strong base
 3. Potentiometric titration of strong acid against strong base
TEXT BOOKS:

REFERENCE BOOKS:

Latest edition of text books and reference books can be referred
SCOPE:
This course is designed to impart fundamental knowledge on the art and science of handling prescriptions and dispensing medications correctly considering the different dose requirements based on various factors. It is essential for the students to know the history of the pharmacy profession and pharmaceutical industry in India and appreciate their current status. In order to learn the different dosage forms and their preparations, an understanding of the untoward interactions between chemicals in pharmaceutical preparations arising due to the incompatibility of various types is essential. It is also important to know the methods to overcome them as well as the basic and important pharmaceutical calculations.

This course will enable the students to differentiate the different liquid dosage forms as well as the semisolid and powder dosage forms based on their formulation, preparation, uses etc. The different official books of standards (Pharmacopoeias) and their evolvement and importance are also covered.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student shall be able to

KNOWLEDGE

K1: Outline the historical background, development, and current status of the profession of pharmacy, pharma industry as well as various pharmacopeias (Remember)

K2: Describe the different parts of prescription and the various factors affecting doses of drugs (Remember)

K3: Classify the different types of dosage forms and incompatibilities between ingredients (Comprehension)

K4: Distinguish between the monophasic and biphasic liquid dosage forms in terms of the types, preparation, formulation etc. (Analysis)

K5: Summarize the powders and the semisolid dosage forms considering their advantages, disadvantages, preparation, excipients used etc. (Synthesis)

K6: Interpret the English meaning of the Latin terms commonly used in prescriptions (Evaluation)

SKILL

S1: Handle different weighing and measuring techniques required for dispensing prescriptions
S2: Demonstrate the preparation of different solid powder dosage forms
S3: Estimate the amount of drug required to prepare solutions of required strength
S4: Perform the preparation, packing, and labeling of various semisolid dosage forms
S5: Design suitable liquid dosage form for the given drug
S6: Apply various methods for altering the strength and adjusting the tonicity of solutions.

ATTITUDE
A1: Follow appropriate measures to correctly dispense the given prescription
A2: Cooperate with fellow students for mutual well being
A3: Praise the efforts of faculty and supporting staff who facilitate your learning
A4: Accept good laboratory practices while performing the preparation of various dosage forms
A5: Display sincerity, punctuality, and integrity
A6: Demonstrate interest, motivation, and self-evaluation for learning beyond classroom

COURSE CONTENTS

UNIT I 10 Hours

Historical background and development of the profession of pharmacy:
History of the profession of Pharmacy in India in relation to pharmacy education, industry and organization, its current status and Pharmacy as a career (2 hrs)
Pharmacopoeias: Introduction to IP, BP, USP and Extra Pharmacopoeia (2hrs)

Dosage forms: Introduction to dosage forms, classification (2hrs)

Prescription: Definition, Parts of prescription, handling of Prescription and Errors in prescription, Introduction to commonly used Latin terms. (2hrs)

Posology: Definition, Factors affecting posology. Pediatric dose calculations are based on age, body weight, and body surface area. (2hrs)

UNIT II 12 Hours

Pharmaceutical calculations:
Weights and measures – Imperial & Metric system, Calculations involving percentage strengths (4 hrs)
allegation, proof spirit, and isotonic solutions based on freezing point and molecular weight (3hrs)

Powders: Definition, classification, advantages and disadvantages, Simple & compound powders – official preparations, dusting powders, effervescent, efflorescent, and hygroscopic powders, eutectic mixtures. Geometric dilutions (3hrs)

Liquid dosage forms: Advantages and disadvantages of liquid dosage forms. Excipients used in the formulation of liquid dosage forms (2hrs)

UNIT III 12 Hours

Monophasic liquids:
Definitions and preparations of Gargles, Mouthwashes, Throat Paint, Ear drops, Nasal drops (2hrs)
Definitions and preparations of Enemas, Syrups, Elixirs, Liniments, and Lotions (2 hrs)
Biphasic liquids:

Suspensions:
Definition, advantages and disadvantages, classifications, Flocculated and Deflocculated suspension (2 hrs)
Formulation and Preparation of suspensions (2 hrs)

Emulsions:
Definition, classification, and test for the identification of the type of Emulsion (1 hr)
Formulation of suspension (2 hrs)
Methods of preparation (1 hr)

UNIT IV 4 Hours

Pharmaceutical incompatibilities: Definition, classification, physical, chemical and therapeutic incompatibilities with examples.

UNIT–V 7 Hours

Semisolid dosage forms: Definitions, classification. Excipients used in semisolid dosage forms (2 hrs)
Preparation and evaluation of ointments, pastes, creams and gels (5 hrs)

LIST OF EXPERIMENTS

Preparation, packing, labeling, and dispensing of the following dosage forms against the given prescriptions

1. **Syrups**
 a) SyrupIP’66
 b) Compound syrup of Ferrous Phosphate BPC’68

2. **Elixirs**
 a) Piperazine citrate elixir
 b) Paracetamol pediatric elixir

3. **Linctus**
 a) Terpin Hydrate Linctus IP’66
 b) Iodine Throat Paint (Mandles Paint)

4. **Solutions**
 a) Strong solution of ammonium acetate
 b) Cresol with soap solution
 c) Lugol’s solution
5. Suspensions
 a) Calamine lotion
 b) Magnesium Hydroxide mixture
 c) Aluminium Hydroxide gel

6. Emulsions
 a) Castor oil emulsion
 b) Turpentine Liniment
 c) Liquid paraffin emulsion
 d) Arachis oil emulsion

7. Powders and Granules
 a) ORS powder (WHO)
 b) Effervescent granules
 c) Dusting powder
 d) Divided powders

8. Semisolids
 a) Sulphur ointment
 b) Non-staining iodine ointment with methyl salicylate
 c) Carbopol gel

9. Gargles and Mouthwashes
 a) Iodine gargle
 b) Chlorhexidine mouthwash

TEXT BOOKS

REFERENCE BOOKS
4. Latest edition of Indian Pharmacopoeia

Latest edition of the text books & reference books can be referred.
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Inorganic Chemistry (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>I</td>
<td>BP104T</td>
</tr>
<tr>
<td>Pharmaceutical Inorganic Chemistry (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>I</td>
<td>BP111P</td>
</tr>
</tbody>
</table>

SCOPE: The subject emphasizes the history of pharmacopoeia, monographs of pharmaceutical inorganic compounds, various sources of inorganic impurities and methods to determine it. It also specifies various electrolytes, their significance in combination and replacement therapy. It describes the preparation, properties, identification tests and storage conditions of pharmaceutical inorganic compounds.

It covers important aspects on buffer equation, buffer capacity, significance of buffers in pharmaceutical systems, buffer systems involved in maintaining physiological acid base balance. The subject also illustrates the significance, properties, storage conditions, precautions and pharmaceutical applications of radioactive substances.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Outline the history of pharmacopoeia and structure of monograph of a drug (Remembering)
K2: Explain various sources of impurities in pharmaceutical preparations (Understanding)
K3: Interpret the significance of limit test in determining impurities in inorganic drugs and pharmaceuticals (Understanding)
K4: Differentiate various electrolytes and their significance in combination and replacement therapy. (Understanding)
K5: Interpret buffer equation, buffer capacity, significance of buffers in pharmaceutical systems and buffer systems involved in maintaining physiological acid base balance (Understanding)
K6: Discuss the preparation, properties, identification tests and storage conditions of pharmaceutical inorganic compounds. (Understanding)
K7: Illustrate the significance, properties, storage conditions, precautions and pharmaceutical applications of radioactive substances. (Understanding)

SKILL

S1: Perform test for purity to find out the purity of Bentonite (Applying)
S2: Assess the neutralizing capacity of Aluminium hydroxide Gel (Applying)
S3: Prepare various inorganic compounds of pharmaceutical importance (Applying)
S4: Detect the presence of chloride, sulphate, iron and Arsenic impurities present in the sample (Analyzing)
S5: Test the presence of chloride and sulphate impurities in the sample by modified limit test.
 (Analyzing)
S6: Identify the unknown inorganic anion/cation present in the sample (Analysing)

ATTITUDE

A1: Appreciate the knowledge of the course in relating the properties, uses and storage conditions of various Inorganic pharmaceutical preparations.
A2: Follow professionalism in the working environment
A3: Participate in group discussions to plan effectively in performing experiments.
A4: Exhibit good communication skills to emerge as compassionate pharmacy professionals.
A5: Assist the fellow students in executing the experiments.
A6: Support the other students in updating knowledge in the subject.

COURSE CONTENTS

UNIT I 6 Hours

Impurities in Pharmaceutical Substances
Sources and types of impurities, Limit tests (1hr)
Monographs (1hr)
Principle involved in the limit test for Chloride, Sulphate, Iron, Arsenic, Lead and Heavy metals (3 hrs)
Modified limit test for Chloride and Sulphate. (1hr)
(Sources and types of impurities (with 2/3 examples))

UNIT II 8 Hours

Buffers
Buffer equations and buffer capacity in general (1hr)
Preparation, stability (1hr)
Buffered isotonic solutions, tonicity- measurements, calculations, adjusting isotonicity(1 hr)
Buffers in pharmaceutical systems
General methods of preparation, assay for the compounds superscripted with an asterisk (*), properties, medicinal uses and storage conditions of inorganic compounds belonging to the following classes.
Major extra and intracellular electrolytes:
Physiological acid-base balance. (1hr)
Electrolytes used in replacement therapy: Sodium chloride*, Potassium chloride, Calcium gluconate* and Oral Rehydration Salt (ORS)(1 hr)
(Functions of major physiological ions)
Dental products:
Dentifrices, the role of fluoride in the treatment of dental caries, Desensitizing agents(1hr)
(Strontium Chloride, Zinc Chloride, Calcium carbonate, Sodium fluoride, Zinc eugenol cement)
UNIT III 5 Hours

Gastrointestinal Agents

Acidifiers: Ammonium chloride* and Dil. HCl (1 hr)

Antacid: Ideal properties of antacids, Sodium Bicarbonate*, Aluminium hydroxide gel, and Magnesium hydroxide mixture. (1 hr)

Antimicrobials: Mechanism, classification, Potassium permanganate, Boric acid, Hydrogen peroxide*, Chlorinated lime*, Iodine and its preparations. (1 hr)

Cathartics: Definition, mechanism (1 hr)

(Combinations antacids - Compound magnesium trisilicate oral powder, Magnesium trisilicate mixture, Compound magnesium trisilicate tablets-composition Magnesium sulphate, Sodium orthophosphate, Kaolin and Bentonite)

UNIT IV 6 hours

Miscellaneous Compounds

Expectorants: Potassium iodide, Ammonium chloride* (1 hr)

Emetics: Copper sulphate*, Sodium potassium tartrate (1 hr)

Haematinics: Ferrous sulphate*, Ferrous gluconate (1 hr)

Poison and Antidote: Sodium thiosulphate*, Activated charcoal, Sodium nitrite 333 (1 hr)

Astringents: Zinc Sulphate, Potash Alum (1 hr)

UNIT V 5 Hours

Radiopharmaceuticals

Radioactivity, Measurement of radioactivity, (1 hr)

Properties of α, β, γ radiations, Half-life, (1 hr)

Radio isotopes and study of radioisotopes - Sodium iodide I131-preparation (1 hr)

(Storage conditions, precautions & pharmaceutical application of radioactive substances.)

LIST OF EXPERIMENTS

I. **Limit tests**

1. Detect the chloride impurity present in the given sample by Limit test for Chloride
2. Detect the Sulphate impurity present in the given sample by Limit test for Sulphates
3. Detect the Iron impurity present in the given sample by Limit test for Iron
4. Detect the Arsenic impurity present in the given sample by Limit test for Arsenic
5. Test the presence of Chloride and Sulphate impurities in the sample by Modified Limit test for Chlorides & Sulphates

II. **Identification Tests**

1. Identify the given sample of Magnesium hydroxide
2. Identify the given sample of Ferrous sulphate
3. Identify the given sample of Sodium bicarbonate
III. Preparation of Inorganic Pharmaceuticals
 1. Prepare Boric acid, calculate the percentage practical yield and report.
 2. Potash Alum, calculate the percentage practical yield and report.
 3. Ferrous Sulphate, calculate the percentage practical yield and report.

IV. Test for purity
 1. Perform the test for purity of Bentonite
 2. Assess the Neutralizing capacity of aluminium hydroxide gel

TEXT BOOKS:
 1. Atherden LM. Bentley and Driver’s Textbook of Pharmaceutical Chemistry. 8th edn. India: Oxford; 2020

REFERENCE BOOKS:

*Latest edition of the text books & reference books can be referred.
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills (T)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2</td>
<td>1</td>
<td>BP105T</td>
</tr>
<tr>
<td>Communication Skills (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>BP112P</td>
</tr>
</tbody>
</table>

SCOPE:
Communication Skills training will equip the students to communicate effectively in their work and personal space. It enables students to direct, plan, organize and control the communication process thereby working cohesively with the team as a team player and add value to the pharmaceutical field.

COURSE LEARNING OUTCOMES:
Upon successful completion of the course the student shall be able to:

KNOWLEDGE:
K1: Define the nature of the communication. (Remembering)
K2: Review the norms associated with effective communication. (Remembering)
K3: Recognize the various Perspectives in Communication. (Remembering)
K4: Identify the numerous barriers hindering Effective Communication. (Remembering)
K5: Distinguish the requirements for an efficient Verbal and Non Verbal Communication. (Understanding)
K6: Differentiate the Do’s and Don’ts associated with the different types of communication. (Understanding)

SKILLS
S1: Apply the learning to frame effective business Written Communication. (Applying)
S2: Compose formal emails, expose good Interview Etiquettes and communicate effectively in business scenarios and with healthcare professionals. (Applying)
S3: Examine the nuances of words and pronunciation. (Applying)
S4: Determine the requirements for the various types of Communication. (Analysing)
S5: Prepare Effective Written materials. (Analysing)
S6: Perform skillfully in Interviews and Group Discussions. (Analysing)

ATTITUDES
A1: Appreciate the knowledge of the course in communicating effectively with others in both personal and professional space,
A2: Participate in Group Discussions and other classroom communication activities.
A3: Exhibit skills to express thoughts and ideas accurately.
A4: Corporate with other healthcare professionals using excellent communication skills to add value to the pharmaceutical field.
A5: Assist teammates in group activities as required.
A6: Support teammates by encouraging them and compassionately aiding them when required.

COURSE CONTENTS:

UNIT – I 7 Hours

Barriers to communication: Physiological Barriers, Physical Barriers, Cultural Barriers, Language Barriers, Gender Barriers, Interpersonal Barriers, Psychological Barriers, Emotional barriers. (2 hrs)

Perspectives in Communication: Introduction, Visual Perception, Language, Other factors affecting our perspective - Past Experiences, Prejudices, Feelings, Environment, Patient Centered Communication- Communication with Empathy, Collaboration with Other Health Professionals, Handling Conflicts, Avoiding Communication Misadventures (2 hrs)

UNIT – II 7 Hours
Elements of Communication: Introduction, Face to Face Communication - Tone of Voice, Body Language (Non-verbal communication), Verbal Communication, Physical Communication. (3 hrs)

Communication Styles: Introduction, The Communication Styles Matrix with example for each - Direct Communication Style, Spirited Communication Style, Systematic Communication Style, Considerate Communication Style.(4 hrs)

UNIT – III 7 Hours
Basic Listening Skills: Introduction, Self-Awareness, Active Listening, Becoming an Active Listener, Listening in Difficult Situations. (2 hrs)

Effective Written Communication: Introduction, When and When Not to Use Written Communication- Complexity of the Topic, Amount of Discussion’ Required, Shades of Meaning, Formal Communication. (3 hrs)

Writing Effectively: Subject Lines, Put the Main Point First, Know Your Audience, Organization of the Message, Etiquette in E-mail Writing.(2 hrs)

UNIT – IV 5 Hours
Interview Skills: Purpose of an Interview, Do’s and Don’ts of an Interview, Communication for Interview- Self Introduction, Body Language, Interview Etiquette. (3 hrs)

Giving Presentations: Dealing with Fears, Planning your Presentation, Structuring Your Presentation, Delivering Your Presentation, Techniques of Delivery. (2 hrs)

UNIT – V 4 Hours
Group Discussion: Introduction, Communication skills in group discussion, Do’s and Don’ts of Group discussion. (4 hrs)
LIST OF EXPERIMENTS
The following learning modules are to be conducted using words worth® English language lab software.

1. Basic communication covering the following topics
 a. Meeting People
 b. Asking Questions
 c. Making Friends
 d. What did you do?
 e. Do’s and Don’ts

2. Pronunciations covering the following topics:
 a. Pronunciation (Consonant Sounds)
 b. Pronunciation and Nouns
 c. Pronunciation (Vowel Sounds)

3. Advanced Learning
 a. Listening Comprehension / Direct and Indirect Speech
 b. Figures of Speech
 c. Effective Communication
 d. Writing Skills
 e. Effective Writing
 f. Interview Handling Skills
 g. E Mail etiquette
 h. Presentation Skills

4. Additional Activities:
 a. Role Play
 b. Debate
 c. Letter Writing
 d. Story writing
 e. Story Re-telling
 f. Quiz games.

TEXT BOOKS:
1. Dr. Pragi Arora, Dr. Varun Arora, Dr. Jagdeep Singh Dua, Davinder Kumar, Communication Skills (For B.Pharmacy 1st Semester as per syllabus issued by Pharmacy Council of India, New Delhi), PV Books, Punjab, 2017.
REFERENCE BOOKS:

5. Deborah Dalley, Lois Burton, Margaret, Green hall. Developing your influencing skills, 1st edn Universe of Learning LTD, 2010

*Latest edition of text books and reference books can be referred
SCOPe:
This is an introductory course in mathematics. This subject deals with the introduction to Sets, Matrices, Relations and Functions, Permutations and Combinations, Sequences and Series, Mathematical Reasoning.

Calculus is a significant mathematic tool for investigating drug movement quantitatively. Differential equations are used to relate the absorptions of drugs in various body organs over time. Integrated equations are regularly used to model the cumulative therapeutic or toxic reactions of drugs in the body.

COURSE LEARNING OUTCOMES:
Upon completion of the course the student shall be able to;

KNOWLEDGE
K1: Define set theory in mathematics
K2: Classify different types of matrices
K3: Illustrate relations and functions in set theory
K4: Describe the relationship between Arithmetic Mean (A.M) and Geometric Mean (G.M)
K5: Explain statements and compound statements in mathematical reasoning
K6: Describe the rules of integration.

SKILL
S1: Construct Venn diagram.
S2: Interpret matrix multiplication.
S3: Determine Cartesian products of sets.
S4: Sum to terms of special series.
S5: Construct new statements from old statements.
S6: Apply Method of substitution and Method of Partial fractions in integration.

ATTITUDE
A1: Appreciate the work of others.
A2: Share and care for good harmony and work culture.
A3: Follow the mathematical theories and rules in a correct manner for getting accurate results.
A4: Participate actively in the class room activities.
A5: Support other students for mutual improvement.
A6: Demonstrate sincerity and punctuality.
COURSE CONTENTS

UNIT I 6 Hours
Sets
Introduction, Sets and their Representations (1 hr)
The Empty Set, Finite and Infinite Sets (1 hr)
Equal Sets, Subsets (1 hr)
Power Set, Universal Set (1 hr)
Venn Diagrams, Operations on Sets (1 hr)
Complement of a Set, Practical Problems on Union and Intersection of Two Sets (1 hr)

UNIT II 6 Hours
Matrices
Introduction matrices, Types of matrices (1 hr)
Operation on matrices (1 hr)
Transpose of a matrix (1 hr)
Matrix Multiplication (1 hr)
Properties of matrix addition and multiplication (1 hr)
Symmetric and skew-symmetric matrices, Invertible matrices (1 hr)

UNIT III 3 Hours
Relations and Functions
Introduction, Cartesian Product of Sets (1 hr)
Relations (1 hr)
Functions (1 hr)

UNIT IV 6 Hours
Sequences and Series
Introduction, Sequences (1 hr)
Series (1 hr)
Arithmetic Progression (A.P.) (1 hr)
Geometric Progression (G.P.) (1 hr)
Relationship between Arithmetic Mean (A.M) and Geometric Mean (G.M) (1 hr)
Sum to n terms of Special Series (1 hr)

UNIT V 3 Hours
Mathematical Reasoning
Introduction, Statements (1 hr)
New Statements from Old, Special Words/Phrases (1 hr)
Implications, Validating Statements (1 hr)
UNIT VI 6 Hours
Calculus

Differentiation: Introductions, Derivative of a function, Derivative of a constant (1 hr)
Derivative of a product of a constant and a function, Derivative of the sum or difference of two functions (1 hr)
Derivative of the product of two functions (product formula), Derivative of the quotient of two functions (Quotient formula) – Without Proof (1 hr)

Integration: Introduction, Definition (1 hr)
Standard formulae, Rules of integration (1 hr)
Method of substitution, Method of Partial fractions (1 hr)

TEXT BOOKS:

1. Mathematics Textbook for Class 11& 12, NCERT

REFERENCE BOOKS:

1. R. D Sharma, Mathematics class XI, Volume 1, Dhanpat Rai Publication
2. R.S. Aggarwal, Mathematics Class 11, Bharti Bhavan

Latest edition of text books and reference books can be referred.
SCOPE: This subject is designed to provide fundamental knowledge about the various organ system and functions of the human body. This course deals with the fundamental aspects of living organisms, their classification, salient features, structure, and function of cell and cell organelles, morphological and physiological process of the plants and animals.

It provides the foundation necessary to comprehend core pharmacy subjects like pharmacology and pharmacognosy. It helps students to develop the skills to distinguish different plant tissues based on their microscopic characters. This course will enable the students to understand the concept of species and taxonomical hierarchy and five kingdom classification.

COURSE LEARNING OUTCOMES:

On successful completion of the course, the student shall be able to:

KNOWLEDGE

K1: Describe the structure, and function of cell and cell organelles.

K2: Discuss the classification and salient features of the five kingdoms of life.

K3: Describe the anatomy and functions of different parts of flowering plants.

K4: Explain the physiological process of the plant.

K5: Explain the functions associated with various organs of the human body.

K6: Explain the coordinated working pattern of different organs of each system.

SKILLS

S1: Identify the modified plant organs based on their characteristic features.

S2: Enumerate the types, functions, and location of epithelial cells.

S3: Assess the role of plant hormones in the physiological processes.

S4: Identify members different Kingdom based upon their features.

S5: Differentiate between artery and vein.

S6: Communicate effectively to convey ideas and information clearly and appropriately.

ATTITUDES

A1: Participate actively in discussions.

A2: Accept responsibility.

A3: Demonstrate regularity and punctuality in class.

A4: Cultivate critical thinking skills.

A5: Develop a commitment to continuous learning.

A6: Acquire the ability to gather, evaluate, and interpret relevant information.
COURSE CONTENTS

UNIT–I 4 Hours
Taxonomy & Systematics
Concept of species and taxonomical hierarchy; Binomial nomenclature. (1 hr)
Salient features and classification of plants into major groups:
Algae, Bryophytes, Pteridophytes, Gymnosperm, and Angiosperm (three to five salient and
distinguishing features and at least two examples of each category) (2 hrs)
Angiosperms- classification up to class, characteristic features, and examples. (1 hr)

UNIT–II 8 Hours
Cell- The Unit of Life
Structure, Function of Plant and Animal Cell and cell organelles. (1 hr)
cell cycle & cell division. (1 hr)
Plant cell inclusions. (1 hr)
Structure of a human cell, Plasma membrane, and Organelles.(1 hr)
Types, functions, and location of Glandular epithelial cells (1 hr)
Structural Organization in Plants
Morphology and modifications; Tissues, types, location, and its functions; (1 hr)
Anatomy and functions of different parts of flowering plants: Root, stem, leaf, inflorescence,
flower, fruit, and seed. (2 hrs)

UNIT–III 4 Hours
Plant Physiology
Transport in plants: Movement of water, gases, and nutrients; Cell-to-cell transport– Diffusion,
facilitated diffusion, active transport. (1 hr)
Plant–water relations– Imbibition, water potential, osmosis, plasmolysis; Long-distance
transport of water– Absorption, apoplast, symplast, transpiration pull, root pressure, and
guttation; (2 hrs)
Transpiration– Opening and closing of stomata; Uptake and translocation of mineral nutrients–
Transport of food, phloem transport, Diffusion of gases. Growth regulators–auxin, gibberellin,
cytokinin, ethylene, ABA.(2 hrs)

UNIT–IV 9 Hours
Human Physiology
Body fluids and circulation
Composition of the blood, lymph, Disorders of blood, and Structure of blood vessels.(1 hr)
Differences between artery and vein Blood vessels of vital organs, Heart sound, and Disorders
of the cardiovascular system.(1 hr)
Neural control and coordination
Organization of the nervous system, Neurons, types of neurons, classification, and properties of
the nerve fibre. (1 hr)
Classification of the peripheral nervous system, Structure, and functions of the sympathetic and
parasympathetic nervous systems. (1 hr)
Generation and conduction of nerve impulse, Reflex action; Sensory perception. (1 hr)
Respiration
Mechanism of breathing and its regulation in humans– Exchange of gases, transport of gases and regulation of respiration. (1 hr)
Artificial respiration, Resuscitation methods. (1 hr)

Digestion and absorption
Alimentary canal and digestive glands; Role of digestive enzymes and gastrointestinal hormones; (1 hr)
Peristalsis, digestion, absorption, and assimilation of proteins, carbohydrates, and fats. (1 hr)

UNIT–V
(5 hours)

Excretory products and their elimination
Modes of excretion – Ammonotelism, ureotelism, uricotelism; Human excretory system– structure and function of kidney and nephron. (1 hr)
Regulation of kidney function– Renin-angiotensin, Atrial Natriuretic Factor, ADH, and Diabetes insipidus; Role of other organs in excretion. (1 hr)

Chemical coordination and regulation
Endocrine glands and hormones; Hypothalamus, Pituitary, Pineal, Thyroid, Parathyroid, Adrenal, Pancreas, Gonads. (1 hr)
Mechanism of hormone action (Elementary Idea); Role of hormones as messengers and regulators, Hypo-and hyperactivity and related disorders (examples only). (1 hr)

Reproductive system
Genetic basis of sex determination, Primary and secondary sex organs, Role of sex hormones in reproductive development. (1 hr)

TEXT BOOKS:

REFERENCE BOOKS:

*Latest edition of text books and reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations of Indian Heritage - Theory (T)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2</td>
<td>I</td>
<td>22ADM101</td>
</tr>
</tbody>
</table>

SCOPE: To introduce students to the depths and richness of the Indian culture and knowledge traditions, and to enable them to obtain a synoptic view of the grandiose achievements of India in diverse fields. To equip students with a knowledge of their country and its eternal values.

COURSE OUTCOMES

CO1: Increase student understanding of true essence of India’s cultural and spiritual heritage. Emancipating Indian histories and practices from manipulation, misunderstandings, and other ideological baggage thus, shows its contemporary relevance.

CO2: Understand the ethical and political strategic concepts to induce critical approach to various theories about India.

CO3: Familiarize students with the multidimension of man’s interaction with nature, fellow beings and society in general.

CO4: Appreciate the socio-political and strategic innovations based on Indian knowledge systems. Gives an understanding of bringing Indian teaching into practical life.

COURSE CONTENTS

Unit 1 – Unit 4

Educational Heritage of Ancient India
Life and Happiness
Impact of Colonialism and Decolonization
A timeline of Early Indian Subcontinent

Unit- 5 – 8

Pinnacle of Selflessness and ultimate freedom
Indian approach towards life
Circle of Life
Ocean of love; Indian Mahatmas.

Unit 9 – 13

6 hours

8 hours
Man's association with Nature
Celebrating life 24/7.
Metaphors and Tropes
Become A Strategic Thinker (Games / Indic activity)
India: In the Views of Other Scholars and Travellers

Unit 14-16 8 hours
Personality Development Through Yoga.
Hallmark of Indian Traditions: Advaita Vedanta, Theory of oneness
Conversations on Compassion with Amma

TEXTBOOKS

Foundations of Indian Heritage

REFERENCE BOOKS

1. The beautiful tree by Dharampal
2. Peasants and Monks in British India by William Pinch
3. India, that is Bharat: Coloniality, Civilisation, Constitution by J Sai Deepak
4. Awaken Children Dialogues with Mata Amritanandamayi
5. Man and Nature by Mata Amritanandamayi Devi
6. What Becomes of the Soul After Death, Divine Life Society
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastery Over Mind (MAOM) (T)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>I</td>
<td>22AVP103</td>
</tr>
</tbody>
</table>

SCOPE:
Mastery Over the Mind (MAOM) is an Amrita initiative to implement schemes and organize university-wide programs to enhance health and wellbeing of all students. This program as part of our efforts for sustainable stress reduction gives an introduction to immediate and long-term benefits and equips every attendee to manage stressful emotions and anxiety facilitating inner peace and harmony. The meditation technique offered by Amrita University Chancellor and world-renowned humanitarian and spiritual leader, Sri Mata Amritanandamayi Devi (Amma), is completely dedicated for guided practical meditation session and theory aspects of MAOM. The theory section comprises principle of meditation, stress management, research and science of meditation, principles of conscious communication.

This course promotes a sense of control and autonomy in the Universal Human Value System, compassion, empathy, responsibility and practicing meditation for the wholesome wellbeing of an individual. This course enhance the understanding of experiential learning based on university’s mission: “Education for Life along with Education for Living”, and is aimed to allow learners to realize and rediscover the infinite potential of one’s true Being and the fulfilment of life’s goals. During practice session students are trained through guided meditation session of different level. They experience Mind and body relaxation, get rid of energy blockage, pure unconditional love, light of consciousness, positive energy and compassion.

COURSE LEARNING OUTCOMES
Upon successful completion of the course, student shall be able to;

KNOWLEDGE
- **K1:** Discuss Principles of meditation
- **K2:** Explain basics of stress management
- **K3:** Summarize the role of mastery over mind in developing compassion
- **K4:** Analyze the correlation between relationships and empathy
- **K5:** Criticize consequences of stress.
- **K6:** Relate the global transformation through meditation

SKILL
- **S1:** Practice of MA-OM meditation technique that is effective in one’s life
S2: Assimilate higher level of awareness and focus.
S3: Demonstrate meditation for stress and anxiety reduction.
S4: Comment on the research and science of meditation:
S5: Perform Skill fully meditation.
S6: Assess the effect of practicing meditation.

ATTITUDE
A1: Appreciate the work of others.
A2: Be sincere and devoted.
A3: Empathize and be humble
A4: Participate actively in the discussions during class.
A5: Support your team members for better outcomes.
A6: Share and care for good harmony and work culture.

COURSE CONTENTS

UNIT 1 4 Hours

Causes of Stress
The problem of not being relaxed. Need for meditation. Basics of stress management at home and workplace. (1 hr)
Traditions and Culture, Principles of meditation, (1hr) Promote a sense of control and autonomy in the Universal Human Value System. (1 hr)
Different stages of Meditation. Various Meditation Models. Various practices of Meditation techniques in different schools of philosophy and Indian Knowledge System. (1 hr)

UNIT II 5 Hours

Improving work and study performance
Meditation in daily life. Cultivating compassion and good mental health with an attitude of openness and acceptance. (1hr)
Research and Science of Meditation: Significance of practicing meditation and perspectives from diverse fields like science, medicine, technology, (1hr) philosophy, culture, arts, management, sports, economics, healthcare, environment etc. (1hr)
The role of meditation for stress and anxiety reduction in one’s life with insights based on recent cutting-edge technology. (1hr)
The effect of practicing meditation for the wholesome wellbeing of an individual. (1hr)

UNIT III 5 Hours

Self communications
Principles of conscious communication. Relationships and empathy. Meditative approach in managing and maintaining better relationships in life during the interactions in the world(1hr)
Role of MAOM in developing compassion, empathy and responsibility, (1hr)
Instilling interest, and orientation to humanitarian projects as a key to harness intelligence and compassion in youth. (1hr)
Methodologies to evaluate effective awareness and relaxation gained from meditation. (1hr)
Evaluating the global transformation through meditation by instilling human values which leads to service learning and compassion driven research. (1hr)

Practice Session:
During practice sessions, students are trained through guided meditation of different levels. It starts with the relaxation of the body through step-by-step instructions. This helps them to relax physically. They are then instructed to focus on their breathing, which helps them relax and focus. Students are then instructed to keep their attention on their thoughts, followed by inhalation and exhalation with the vibration of the sound Ma-Om. This makes them experience stillness and inner expansiveness. Finally, they are instructed to practice White Flower Meditation for global peace and harmony. Through this White Flower meditation, they can connect with the universe and experience oneness.

TEXT BOOKS:

REFERENCES:

2. Swami Amritaswarupananda Puri “Awaken Children Vol 1, 5 and 7 - Dialogues with Amma on Meditation”, August 2019

*Latest edition of text books and reference books can be referred
SEMESTER-II
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Anatomy And Physiology - II (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>II</td>
<td>BP201T</td>
</tr>
<tr>
<td>Human Anatomy And Physiology - II (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>II</td>
<td>BP207P</td>
</tr>
</tbody>
</table>

SCOPE: The Course’s primary goal is to learn how the different bodily systems work together to maintain homeostasis. By understanding the interconnected mechanisms involved in homeostasis, students can appreciate how various processes are controlled and balanced within the body. It provides the foundation necessary to comprehend pathophysiology and pharmacology.

Knowledge in the course helps students to develop the skills to determine various body parameters that provide insights into an individual's health status. These skills are important for healthcare professionals to diagnose, monitor, and treat patients effectively. Furthermore, a solid understanding of this course empowers individuals to support the healthcare system and educate the general public about various aspects of health.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to:

KNOWLEDGE

K1: Describe the anatomical and physiological terms associated with the human body
K2: Identify the tissues, organs and organ systems in the human body
K3: Outline the disorders that affect various organs of the human body
K4: Discuss the gross anatomy of various organs of the human body
K5: Illustrate the physiological processes involved in the homeostasis of the human body
K6: Explain the interlinked mechanisms involved in the homeostasis of the human body

SKILL

S1: Distinguish the various tissues and organs of the human body
S2: Perform skillfully various blood estimations in humans
S3: Measure heart rate and blood pressure in humans
S4: Determine the body temperature, BMI and blood oxygen levels of humans using various methods
S5: Test the lung capacities of humans using the spirometer
S6: Interpret ECG and Chest X rays of humans
S7: Interpret the laboratory values of humans associated with various diseases states
ATTITUDE
A1: Appreciate the knowledge of Anatomy and Physiology for studying pathophysiology and pharmacology
A2: Communicate with peers and others.
A3: Support and collaborate with others.
A4: Exhibit professionalism in the work environment.
A5: Participate in healthcare initiatives.
A6: Embrace the new advancements in the healthcare system.

COURSE CONTENTS

UNIT I 6 Hours
Nervous System
Electrophysiology of nerve impulse transmission (1hr)
Receptors, synapses, neurotransmitters, and neuroglia. (2hrs)
Central nervous system: Meninges, brain ventricles, and cerebrospinal fluid (1hr)
Structure and functions of the brain and spinal cord (2hrs)

UNIT II 6 Hours
Peripheral Nervous System
Origin and functions of spinal and cranial nerves. (2hrs)
Special senses
Anatomy, functions and disorders of the eye (1hr)
ear (1hr)
nose (1hr)
tongue (1hr)

UNIT III 6 Hours
Digestive System & Respiratory System
Anatomy, functions and disorders of the stomach (1hr), small and large intestine (1hr).
Functions & disorders of pancreas and liver (1hr)
Anatomy, functions and disorders of the lungs (1hr)
Respiration mechanism, respiration regulation, transport of respiratory gases (1hr)
Lung volumes and capacities (1hr)

UNIT IV 6 Hours
Endocrine System
Classification of hormones, mechanism of hormone action (1hr)
Anatomy, functions and disorders of the:
Pituitary gland (1hr)
Thyroid gland (1hr)
Parathyroid gland (1hr)
Adrenal gland (1hr)
Pancreas (1hr)
UNIT V

6 Hours

Reproductive System
Anatomy, functions and disorders of,
Male reproductive system (1hr) and Female reproductive system (1hr)
Physiology of menstruation and fertilisation with relevance to the role of hormones (1hr)
Spermatogenesis with relevance to the role of hormones (1hr)
Oogenesis with relevance to the role of hormones (1hr)
Pregnancy and Parturition with relevance to the role of hormones (1hr)

LIST OF PRACTICAL EXPERIMENTS

1. Determination of bleeding and clotting time
2. Estimation of Haemoglobin
3. Determination of blood group
4. Determination of heart rate and pulse rate
5. Recording of BP using various methods
6. Determination of RBC count
7. Determination of WBC count
8. Demonstrate the visual acuity
9. Determine the body temperature
10. Determination of tidal volume and vital capacity using the spirometer
11. Determination of the basal mass index.
12. Determination and interpretation of random blood glucose levels using one touch glucometer
13. Determination and interpretation of ECG
14. Determination and interpretation of blood oxygen level using a pulse oximeter and the need for oxygen therapy.
15. Interpretation of chest X-rays.

TEXT BOOKS:

4. Vishram Singh. Textbook of Anatomy: Head, Neck and Brain-Volume 3. 3rd edn.: Elsevier India, New Delhi, India. 2020
REFERENCE BOOKS

4. Deshpande SA, Shirole DS, Amale PN, Vyawahare NS. Practical Book of Human Anatomy and Physiology. 4th edn., Nirali Prakashan, India. 2020 (Practical)
5. Goyal RK, Patel NM. (Eds.), Practical Anatomy and Physiology. 17th edn., B S Shah Prakashan, India. 2020

*Latest edition of the text books & reference books can be referred
SCOPE:
This Course deals with the classification and nomenclature of simple organic compounds, structural isomerism, intermediates forming in reactions, important physical properties, reactions, and methods of preparation of alkyl halides, alcohols, carbonyls, carboxylic acids, and aliphatic amines.

The syllabus emphasizes mechanisms and orientation of reactions such as electrophilic addition, nucleophilic substitution, nucleophilic addition & elimination. This syllabus also includes the structure and medicinal uses, qualitative tests, identifying the preliminary test, and detection of elements, of some organic compounds.

COURSE LEARNING OUTCOME:

Upon successful completion of the course, the student shall be able to:

KNOWLEDGE

- **K1:** Outline the classification of organic compounds
- **K2:** Explain the general principles of organic reactions and mechanisms like addition, substitution & elimination.
- **K3:** Distinguish the structure and IUPAC name of organic compounds
- **K4:** Interpret the structure, name & types of isomerism of organic compounds
- **K5:** Demonstrate the general methods of preparation, reactivity, and stability of organic compounds
- **K6:** Illustrate the structure and medicinal uses of some organic compounds.
- **K7:** Describe the basic concepts of alkane, alkene, and conjugated dienes
- **K8:** Articulate the basic knowledge regarding alkyl halides, alcohols, carbonyls, carboxylic acids, and aliphatic amines

SKILL

- **S1:** Prepare organic compounds.
- **S2:** Determination of melting point and boiling point of organic compounds
- **S3:** Construct the molecular models of various organic compounds
S4: Identify the preliminary test and detection of elements.
S5: Classify various organic compounds based on their functional groups
S6: Analyse the physico-chemical properties of various organic compounds

ATTITUDE
A1: Appreciate the knowledge of the course about the basic concept of organic compounds.
A2: Follow professional and standard procedures.
A3: Participate in group discussion and the practical sessions.
A4: Follow the SOPs guidelines for the use of lab instruments and equipment’s.
A5: Assist fellow students and others in executing the experiments.
A6: Take responsibility for self and group outcomes.

COURSE CONTENTS:

UNIT-I

Classification, nomenclature and isomerism
Classification of Organic Compounds. (1 hr)
Common and IUPAC systems of nomenclature of organic compounds, alkane and complex substituents. (1 hr)
IUPAC nomenclature of alkene, alkyne, and cyclo alkene(1 hr)
IUPAC nomenclature of functional groups like alcohol, aldehyde, and ketone(1 hr)
IUPAC nomenclature of terminal functional groups like carboxylic acid, acid halide, acid amide, ester, cyanide, amine and ether (1 hr)
IUPAC nomenclature of Polyfunctional groups (1 hr)
Electron displacements in organic chemistry (such as; inductive effect, resonance, hyperconjugation). (1 hr)
Reaction intermediates (such as; freeradicals, carbocations, carbanions, carbenes and nitrenes). (1 hr)
Structural isomerisms in organic compounds. (2 hrs)

UNIT-II

General methods of preparation of Alkanes, Alkenes, and Conjugated dienes(1 hr)
SP3 hybridization in alkanes, SP2 hybridization in alkenes. (1 hr)
Halogenation of alkanes, Stabilities of alkenes, uses of paraffins. (1 hr)
E1 and E2 reactions – kinetics, order of reactivity of alkyl halides, rearrangement of carbocation. E1 vs E2 reactions, Factors affecting E1 and E2 reactions. (2 hrs)
Ozonolysis, Saytzeffs orientation, and evidence. (1 hr)
Electrophilic addition reactions of alkenes, Markownikoffs orientation. (1 hr)
Free radical addition reactions of alkenes, Anti Markownikoff’s orientation. (1 hr)
Stability of conjugated dienes, Diel-Alder(1 hr)
Electrophilic addition, free radical addition reactions of conjugated dienes, allylic rearrangement. (2 hrs)
UNIT-III
7 Hours
General methods of preparation of Alkyl halides* (1 hr)
SN₁ and SN₂ reactions- kinetics, order of reactivity of alkyl halides, stereochemistry and rearrangement of carbocation. SN₁ versus SN₂ reactions, Factors affecting SN₁ and SN₂ reactions. (2 hrs)
Structure and uses of ethyl chloride, Chloroform, trichloroethylene, and tetrachloroethylene (1 hr)
General methods of preparation of Alcohols*(1 hr)
Qualitative tests, Structure, and uses of Ethyl alcohol, Methyl alcohol, chlorobutanol, and Cetosteryl alcohol, dichloromethane, tetrachloromethane, and iodoform.
Benzyl alcohol, Glycerol, Propylene glycol.(2 hrs)

UNIT-IV
8 Hours
General methods of preparation of Carbonyl compounds* (1 hr)
Nucleophilic addition (1 hr)
al dol condensation, Crossed Aldol condensation (1 hr)
Cannizzaro reaction, Crossed Cannizzaro reaction (1 hr)
Benzoin condensation, Perkin condensation (1 hr)
Qualitative tests (1 hr)
Structure and uses of Formaldehyde, Paraldehyde, Acetone, Chloral hydrate, Hexamine, Benzaldehyde, Vanilin, Cinnamaldehyde. (2 hrs)

UNIT-V
9 Hours
General methods of preparation of Carboxylic acids* (1 hr)
Acidity of carboxylic acids, effect of substituents on acidity. (1 hr)
Qualitative tests for carboxylic acids, amide and ester. (1 hr)
Structure and Uses of Acetic acid, Lactic acid, Tartaric acid, Citric acid, Succinic acid, Oxalic acid, Salicylic acid, Benzoic acid(3 hrs)
General methods of preparation of Aliphatic amines* (1 hr)
Basicity, the effect of substituent on Basicity, Qualitative test. (1 hr)
Structure and uses of Ethanolamine, Ethylenediamine, Amphetamine Benzyl benzoate, Dimethyl phthalate, Methyl salicylate and Acetyl salicylic acid. (1 hr)

LIST OF EXPERIMENTS:

1. Determination of melting point and boiling point of organic compounds.
2. Detection of elements like nitrogen, sulphur and halogen.
3. Analysis of simple organic compounds I (Amide/urea)
4. Analysis of simple organic compounds II (Phenols)
5. Analysis of simple organic compounds III (Carbohydrates)
6. Analysis of simple organic compounds IV (Amines)
7. Analysis of simple organic compounds V (Carboxylic acid)
8. Analysis of simple organic compounds VI (Aldehydes & Ketones)
9. Analysis of simple organic compounds VII (Alcohols)
10. Analysis of simple organic compounds IX (Halogenated hydrocarbons)
11. Preparation of benzanilide
12. Preparation of salicylic acid
13. Preparation of aspirin
14. Preparation of picric acid
15. Construct the molecular models.

TEXT BOOKS:

REFERENCE BOOKS:

Latest edition of the text books & reference books can be referred.
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>II</td>
<td>BP203T</td>
</tr>
<tr>
<td>Biochemistry(P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>II</td>
<td>BP209P</td>
</tr>
</tbody>
</table>

SCOPE: The Course is designed to provide a thorough understanding of the molecular level of the chemical processes associated with living cells and the metabolic pathways of nutrient molecules in physiological and pathological conditions. It also emphasizes mammalian genome genetic organization. It also describes the chemical nature and biological role of biomolecules. The Course also gives an idea of the classification of biomolecules based on their structure and functions.

It also gives a clear picture of the concept of bioenergetics and energy-rich compounds. Also describes the metabolic pathways of carbohydrates, lipids, amino acids, and nucleic acids in physiological and pathological conditions. The subject explains various mechanisms involved in biological oxidation and also the kinetics of enzyme action, inhibition, regulation, and applications of enzymes.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student shall be able to:

KNOWLEDGE

K1: Outline Genetic code and the organization of mammalian genome

K2: Enumerate the IUB classification and properties of enzymes

K3: Explain the chemical nature and biological role of biomolecules.

K4: Classify various biomolecules based on structure and functions.

K5: Discuss the concept of bioenergetics and energy-rich compounds

K6: Interpret the metabolic pathways of carbohydrates, lipids, amino acids and nucleic acids in physiological and pathological conditions

K7: Illustrate the various mechanisms involved in biological oxidation

K8: Explain the kinetics of enzyme action, inhibitors, regulation, therapeutic and diagnostic applications of enzymes.

SKILL

S1: Identify the presence of various amino acids in the sample

S2: Test the presence of proteins in the sample

S3: Analyse qualitatively various samples of Carbohydrates

S4: Detect the presence of abnormal constituents in the urine sample

S5: Calculate the concentration of reducing sugar in the sample using analytical methods
S6: Determine the concentration of proteins in the sample by quantitative analysis

ATTITUDE

A1: Appreciate the knowledge of Biochemistry in relating the significance of various enzymes in different pathological conditions.

A2: Follow professionalism in the working environment

A3: Participate in group discussions to plan effectively in performing experiments.

A4: Exhibit good communication skills to emerge as compassionate pharmacy professionals.

A5: Assist fellow students in executing the experiments.

A6: Demonstrate leadership quality in planning and executing experiments.

A7: Cooperate with other students within the team in laboratory practices.

COURSE CONTENTS

UNIT I 4 Hours

Biomolecules
Introduction, classification, chemical nature (1hr)
Biological role of carbohydrate, lipids, nucleic acids, amino acids and proteins (1hr).

Bioenergetics
Energy rich compounds; classification; (1hr)
Biological significances of ATP and cyclic AMP (1hr)
Concept of free energy, endergonic and exergonic reaction Relationship between free energy, enthalpy and entropy; Redox potential (1hr).

UNIT II 10 Hours

Carbohydrate Metabolism
Glycolysis – Pathway, energetics and significance (1hr)
Citric acid cycle– Pathway, energetics and significance (1hr)
HMP shunt –Pathway and its significance; (1hr)
Glucose-6-Phosphate dehydrogenase (G6PD) deficiency (1hr)
Glycogen metabolism Pathways and glycogen storage diseases (GSD) (1hr)
Glucose-6-Phosphate dehydrogenase deficiency (1hr)
Glycogen metabolism Pathways and glycogen storage diseases (GSD) (1hr)
Gluconeogenesis- Pathway and its significance, Hormonal regulation of blood glucose level and Diabetes mellitus (1hr)

Biological oxidation
Electron transport chain (ETC), mechanism. (1hr)
Oxidative phosphorylation & its mechanism (1hr)
substrate phosphorylation (1hr)
Inhibitors ETC and oxidative phosphorylation/ Uncouplers (1hr)

UNIT III 6 Hours

Lipid Metabolism
β-Oxidation of saturated fatty acid (Palmitic acid) (1hr)
Formation and utilization of ketone bodies; ketoacidosis (1hr)
De novo synthesis of fatty acids (Palmitic acid) (1hr)
Biological significance of cholesterol and conversion of cholesterol into bile acids, steroid hormone and vitamin D, Hypercholesterolemia, atherosclerosis, fatty liver, obesity. (1hr)

Amino acid metabolism
General reactions of amino acid metabolism: Transamination, deamination & decarboxylation, urea cycle (1hr)
Catabolism of phenylalanine, tyrosine 5-HT, melatonin, dopamine, noradrenaline, adrenaline, Catabolism of heme, Disorders of urea cycle, Phenylketonuria, Albinism, alkeptonuria, tyrosinemia, hyperbilirubinemia and jaundice (1hr)

UNIT IV 4 Hours

Nucleic Acid Metabolism and Genetic Information Transfer
Biosynthesis of purine and pyrimidine nucleotides (1hr)
Catabolism of purine nucleotides, Hyperuricemia, Gout (1hr)
Genetic code, (1hr)
Protein synthesis inhibitors (1hr)

UNIT V 6 Hours

Enzymes
Introduction, properties, nomenclature and IUB classification of enzymes (1hr)
Enzyme kinetics - Michaelis plot, Line Weaver Burke plot (1hr)
Enzyme inhibitors with examples (1hr)
Regulation of enzymes: enzyme induction and repression, allosteric enzymes regulation (1hr)
Therapeutic and diagnostic applications of enzymes and isoenzymes (1hr)
Coenzymes – Structure and biochemical functions (1hr)

LIST OF EXPERIMENTS

1. Analyse the given sample of carbohydrate qualitatively. (Sample 1- Glucose)
2. Analyse the given sample of carbohydrate qualitatively. (Sample 2- Lactose)
3. Analyse the given sample of carbohydrate qualitatively. (Sample 3- Maltose)
4. Analyse the given sample of carbohydrate qualitatively. (Sample 4- Sucrose)
5. Analyse the given sample of carbohydrate qualitatively. (Sample 5- Fructose)
6. Identify the given sample of Amino acids (Sample 1- Histidine)
7. Identify the given sample of Amino acids (Sample 2- Tryptophan)
8. Identify the given sample of Amino acids (Sample 3- Arginine)
9. Identify the given sample of Amino acids (Sample 4- Methionine)
10. Identify the given sample of Amino acids (Sample 5- Tyrosine)
11. Detect the presence of abnormal constituents in urine (Sample 1: Albumin)
12. Detect the presence of abnormal constituents in urine (Sample 2: Bile salts)
13. Detect the presence of abnormal constituents in urine (Sample 3: Ketone bodies)
14. Detect the presence of abnormal constituents in urine (Sample 4: Glucose)
15. Test the presence of Proteins (Albumin, Casein)
16. Determine the concentration of reducing sugars by Benedict's Method
17. Determine the concentration of proteins by Biuret method
TEXT BOOKS:

3. Pattabhiraman TN. Laboratory Manual & Practical Biochemistry, 4th edn. All India Publishers & Distributors India; 2015. (Practical)

REFERENCE BOOKS:

Latest edition of the text books & reference books can be referred.
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Engineering (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>II</td>
<td>BP204T</td>
</tr>
<tr>
<td>Pharmaceutical Engineering (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>II</td>
<td>BP210P</td>
</tr>
</tbody>
</table>

SCOPE: This course is designed to impart a fundamental knowledge on the art and science of various unit operations and unit processes employed in the pharmaceutical industry. It provides students with a comprehensive understanding of the essential techniques, design and considerations of unit operations such as size reduction, size separation, mixing, filtration, evaporation, distillation, drying etc., which are essential in pharmaceutical manufacturing. Students will learn about the different types of equipment and machinery used in pharmaceutical processes, their working principles, and the selection criteria for optimal performance.

The course discusses various preventive measures and control strategies to mitigate corrosion in pharmaceutical plants, including the use of protective coatings, cathodic protection, material selection, and proper maintenance practices. Demonstration sessions and laboratory experiments may be included to provide hands-on experience with unit operations, and the use of relevant equipment and instruments commonly employed in pharmaceutical engineering. It aims to prepare students for future roles in pharmaceutical manufacturing, quality control, and plant design and maintenance.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to:

KNOWLEDGE

K1: List the various factors influencing unit operation.

K2: Identify the key parameters and variables that influence the performance of unit operations.

K3: Explain various unit operations used in pharmaceutical industry.

K4: Discuss the mechanism of a particular unit operation.

K5: Describe various material handling techniques used in pharmaceutical industry.

K6: Analyse various unit operations and their significance in pharmaceutical manufacturing.

SKILL

S1: Select appropriate materials for pharmaceutical plant construction.

S2: Apply engineering principles to optimize unit operations in the pharmaceutical industry.

S3: Develop standard operating procedures (SOPs) for unit operations and implement them effectively.

S4: Demonstrate an experiment to show the influence of process parameter in a particular unit operation process.

S5: Analyse pharmaceutical processes and unit operations based on specific requirements.

S6: Choose appropriate pharmaceutical equipment for carrying out desired unit operation process.
ATTITUDE
A1: Demonstrate a professional and ethical approach towards pharmaceutical engineering practices.
A2: Develop sharing and caring activity in the pharmaceutical engineering lab activities including safety aspects.
A3: Appreciate the impact of pharmaceutical engineering on the overall drug development and manufacturing process.
A4: Participate actively in the class room activities of pharmaceutical engineering subject.
A5: Display a commitment to continuous learning and keeping up-to-date with advancements in unit operations.
A6: Foster a sense of responsibility and accountability in the execution of unit operations in pharmaceutical engineering.

COURSE CONTENTS:

UNIT-I
Introduction to Pharmaceutical Engineering, unit operations, unit processes and its pharmaceutical applications (1hr).

Size Reduction:
Objectives, Mechanisms & Laws governing size reduction(1hr).
Factors affecting size reduction(1hr).
Principles, construction, working, uses, merits and demerits of the following:
Hammer mill, ball mill, fluid energy mill(1hr)
Edge runner mill & end runner mill (1hr).

Size Separation:
Objectives, applications & mechanism of size separation, official standards of powders, sieves, size separation(1hr).
Principles, construction, working, uses, merits and demerits of the following:
Sieve shaker, cyclone separator (1hr)
Air separator, Bag filter & elutriation tank (1hr).

UNIT-II

Evaporation:
Objectives, applications and factors influencing evaporation(1hr)
Differences between evaporation and other heat process(1hr).
principles, construction, working, uses, merits and demerits of :
Steam jacketed kettle, horizontal tube evaporator, climbing film evaporator(1hr)
Forced circulation evaporator, multiple effect evaporator& Economy of multiple effect evaporator(1hr).

Distillation:
Basic Principles and methodology of the following:
Simple distillation, flash distillation(1hr)
fractional distillation, distillation under reduced pressure(1hr)
Steam distillation and molecular distillation (1hr).
UNIT- III 8 Hours

Drying:
Objectives, applications & mechanism of drying process(1hr).
Measurements & applications of Equilibrium Moisture content, rate of drying curve(1hr).
Principles, construction, working, uses, merits and demerits of the following:
Tray dryer, drum dryer, spray dryer(1hr)
Fluidized bed dryer, vacuum dryer, freeze dryer(1hr).

Mixing:
Objectives, applications & factors affecting mixing(1hr).
Difference between solid and liquid mixing, mechanism of solid mixing, liquids mixing and semisolids mixing(1hr).
Principles, Construction, Working, uses, Merits and Demerits of the following:
Double cone blender, twin shell blender, ribbon blender, Sigma blade mixer(1hr).
Planetary mixers, Propellers, Turbines, Paddles & Silverson Emulsifier(1hr).

UNIT-IV 4 Hours

Filtration:
Objectives, applications, Theories & Factors influencing filtration(1hr).
Filter aids, filter medias(1hr).
Principle, Construction, Working, Uses, Merits and demerits of the following:
Plate & frame filter, filter leaf, rotary drum filter(1hr).
Meta filter & Cartridge filter, membrane filters and Seidtz filter(1hr).

UNIT-V 2 Hours

Materials of pharmaceutical plant construction, Corrosion and its prevention:
Factors affecting during materials selected for Pharmaceutical plant construction, Theories of corrosion, types of corrosion and their prevention(1hr).
Ferrous and nonferrous metals, inorganic and organic non-metals, basic of material handling systems(1hr).

LIST OF EXPERIMENTS

1. Steam distillation – To calculate the efficiency of steam distillation
2. To determine the overall heat transfer coefficient by heat exchanger.
3. Construction of drying curves (for calcium carbonate and starch).
4. Determination of moisture content and loss on drying, determination of instantaneous rate of drying for various samples.
6. Description of Construction working and application of Pharmaceutical Machinery such as rotary tablet machine, fluidized bed coater, fluid energy mill, probe sonicator, ultra-centrifuge, double cone blender.
7. Size analysis by sieving – To evaluate size distribution of tablet granulations.
8. Construction of various size frequency curves including arithmetic and logarithmic probability plots.
9. Demonstration of colloid mill, planetary mixer, fluidized bed dryer, freeze dryer and such other major equipment.

10. Factors affecting Rate of Filtration and Evaporation (Surface area, Concentration and Thickness/ viscosity.

TEXT BOOKS:

REFERENCE BOOKS:

Latest edition of the text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Applications In Pharmacy (T)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2</td>
<td>II</td>
<td>BP205T</td>
</tr>
<tr>
<td>Computer Applications In Pharmacy (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>II</td>
<td>BP211P</td>
</tr>
</tbody>
</table>

SCOPE: This course deals with the introduction Database, Database Management system, computer application in clinical studies and use of databases. Computers in pharmacy are used for the information of drug data, records and files, drug management (creating, modifying, adding and deleting data in patient files to generate reports), business details.

The field of pharmacy is fully benefitted by the use of computers getting and comparing the information to yield an accurate study. In retail pharmacy computers are used for printing out billing and payment information is often used for inventory control. Records of various drug data, i.e., drug data information; whenever drugs or medicaments are added to the stock or otherwise removed from the stock, the stock position is immediately updated.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course the student shall be able to;

KNOWLEDGE

K1: Define data base management system in computer.
K2: Illustrate the methods of data collection using search engines.
K3: Explain different types operations in Excel.
K4: Describe various applications of computers in pharmacy.
K5: Interpret the objective of bioinformatics and bioinformatics databases.
K6: Outline the role of computers as data analyst in preclinical development.

SKILL

S1: Analyze data using Excel.
S2: Construct tables of data using SQL.
S3: Differentiate various applications of computer in Pharmacy education
S4: Construct and modify databases in MS Access.
S5: Analyze drug information storage and retrieval using MS Access.
S6: Construct different labels and dashboard using Excel.

ATTITUDE

A1: Support other students for mutual improvements.
A2: Participate actively in the practical sessions and class room activities.
A3: Foster a sense of responsibility and professionalism while working in lab
A4: Be sincere and punctual.
A5: Accept all the merits and demerits of computer application in Pharmacy.
A6: Detect various use of cloud computing in hospital and clinical pharmacy.
COURSE CONTENTS:

UNIT I 10 Hours
Programming languages and basic softwares
Programming Languages – C/C++, Java, Python (more focus on Python) (2hrs)
Database – Database, Database Management System, SQL, Popular DMBS like MySQL, Mongo DB (2hrs)
Introduction to Search engines, methods of data collection (2hrs)
Cloud Computing – Basics (1hr)
Analytics – Excel, Basic Operations, Excel Formulas & Functions, Data analysis and its representation, creating custom Dashboards using Excel (2hrs)
Emergence of Python as an important language for AI/ML, Data Science & Data Analytics (1hr)

UNIT II 6 Hours
Computers in purchasing and inventory control of retail and wholesale pharmacy shops
Computer software for billing process, drug information, preparation of prescription label, record of transactions, automatic ordering of low quantity products via electronic transitions (2hrs)
generation of multiple sales analysis for a day, month, week and to date for the number of prescriptions handled and amounts in cash. position of the stock, annual auditing, tracking the movements of stock. (2hrs)
international data banks are available such as World standard drug database, Drug bank, MEDLARS (Medical Literature Analysis and Retrieval System) and DIALOG. (2hrs)

UNIT III 5 Hours
Computers in hospital and clinical pharmacy
Computer software for receiving and allotment of drugs and medicines and professional supplies, Maintaining patient medical record, Drug information services, Patient monitoring(2hrs)
Computer programs designed to calculate drug dosage to suit individual patients need. Laboratory Information Management System(LIMS) and Text Information Management System(TIMS), hospital management system (HMS) (3 hrs)

UNIT IV 3 Hours
Computers in pharmacy education
Use of multimedia packages, hypertext video chats, web based education, multimedia based education (1hr)
Intelligent tutoring system, digital libraries, simulation laboratories, tele-education
Computer Aided Learning (CAL) (2hrs)

UNIT V 3 Hours
Computers in drug analysis and drug design
Software associated with various analytical instruments, In built libraries associated with software for searching of data (2 hrs)
Drug design assisted by computer software, Bioinformatics and cheminformatics software. (1hr)

UNIT VI 3 Hours
Computers in management of clinical data
Computer software used in clinical trials data collection and management(1hr)
Registration, study management tools, and statistical analysis, E-clinical soft wares (2hrs)
LIST OF EXPERIMENTS

1. Design a questionnaire using a word processing package to gather information about a particular disease.
2. Create a HTML webpage to show personal information.
3. Retrieve the information of a drug and its adverse effects using online tools
4. Creating mailing labels Using Label Wizard, generating label in MS WORD
5. Create a data base in MS Access to store the patient information with the required fields Using access
6. Design a form in MS Access to view, add, delete and modify the patient record in the database
7. Generating report and printing the report from patient database
8. Creating invoice table using – MS Access
9. Drug information storage and retrieval using MS Access
10. Creating and working with queries in MS Access
11. Exporting Tables, Queries, Forms and Reports to webpages
12. Exporting Tables, Queries, Forms and Reports to XML pages

TEXT BOOK
1. Sean Ekins , Wiley Computer Application in Pharmaceutical Research and Development, Inter-science, A John Willey and Sons, INC., Publication, USA.2019

REFERENCE BOOKS:
Course Title	**L**	**T**	**P**	**Total Hrs.**	**Credits**	**Semester**	**Course Code**
Glimpses of Glorious India - Theory | 2 | 0 | 0 | 30 | 2 | II | 22ADM111

SCOPE: To introduce students to the depths and richness of the Indian culture and knowledge traditions, and to enable them to obtain a synoptic view of the grandiose achievements of India in diverse fields. To equip students with a knowledge of their country and its eternal values.

COURSE LEARNING OUTCOMES:

CO1 This part deals with two topics: The Need to Become Fearless in Life and the Role or Status of Women in India.

CO2 This part deals with three topics: Teachings and Principles of Chanakya, Difference between the terms *God and Iswara* and Contribution of *Bhagavad Gita*.

CO3 This area handles two important concepts: Indian Soft powers and A portrayal of how nature was preserved through the medium of Faith.

CO4 Two important topics are discussed here: A Brief history of Ancient Indian Cultures and a Discussion on Practical Vedanta.

CO5 From this part, a student gets an insight into the contribution that India has made to the world. Moreover, foreign powers have been trying to humiliate and degrade India in front of the world for so long. However, it should be recognized that many inventions that are considered beneficial to the world today have been contributed by the great men of India.

COURSE CONTENTS:

UNIT 1 - Face the Brutes
UNIT 2 - Role of Women in India
UNIT 3 - Acharya Chanakya
UNIT 4 - God and Iswara
UNIT 5 - Bhagavad Gita: From Soldier to Samsarin to Sadhaka
UNIT 6 - Lessons of Yoga from Bhagavad Gita
UNIT 7 - Indian Soft Powers: A Solution For Many Global Challenges
UNIT 8 - Nature Preservation through faith
UNIT 9 - Ancient Cultures what happened to them.
UNIT 10 - Practical Vedanta
UNIT 11 - To the World from India
UNIT 12 - Indian Approach to Science
TEXTBOOK:
Glimpses of Glorious India

REFERENCE COURSE MATERIAL
Topic wise PPTs will be uploaded in Teams
SEMESTER-III
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Organic Chemistry –II(T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>III</td>
<td>BP301T</td>
</tr>
<tr>
<td>Pharmaceutical Organic Chemistry –II (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>III</td>
<td>BP309P</td>
</tr>
</tbody>
</table>

SCOPE: This subject deals with general methods of preparation, reactions and mechanisms of some important organic compounds. The subject covers the structural elucidation of benzene and its reaction. The substituents effect of benzene towards electrophilic substitution reactions was also discussed. The chemical reactivity of phenol, aromatic amines and aromatic carboxylic acid and its significance in the organic chemistry is described.

The syllabus emphasizes the synthesis and reactions of polynuclear hydrocarbons. The subject also deals with the stability of cycloalkanes. Introduction of heterocyclic chemistry, classification of heterocyclic compounds, IUPAC rules, synthesis and reactions of five membered heterocyclic compounds are included in the syllabus.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student shall be able to:

KNOWLEDGE

K1: Describe the basic principles of organic chemical reactions and their mechanism (Remembering).

K2: Explain the evidence of elucidating various organic function groups by qualitative analysis (Comprehension).

K3: Apply the synthetic applications of substituted benzene, phenol, aromatic carboxylic acid, aromatic primary amine, and polynuclear hydrocarbons (Application).

K4: Determine the stability of cycloalkanes (Analysis).

K5: Categorize the different classes of heterocyclic compounds and summarize the electrophilic substitution reactions of five-membered heterocyclic compounds (Synthesis).

K6: Choose the structure and commercial uses of some organic compounds (Evaluation).

SKILLS

S1: Demonstrate the effects of substituents on the acidity and basicity of aromatic carboxylic acid and phenol.

S2: Design various classes of mono-substituted benzenes from the diazonium salts.

S3: Detect the orientation of electrophilic substitution reactions of monosubstituted benzene and polynuclear hydrocarbons.

S4: Calibrate Huckle’s rule.

S5: Measure the yield of the synthesised organic compounds.

S6: Estimate the purity of the synthesised organic compounds.
ATTITUDES

A1: Accept the responsibility and work as a team.
A2: Participate actively in the discussion.
A3: Follow good laboratory practices.
A4: Cooperate with students and others.
A5: Develop sharing and caring.
A6: Praise the capacity of self evaluation and motivate for lifelong learning.

COURSE CONTENTS:

General methods of preparation and reactions of compounds superscripted with an asterisk (*) to be explained. To emphasize definition, types, classification, principles/mechanisms, applications, and examples.

UNIT I 7 Hours

Benzene and Its Derivatives
Analytical, synthetic and evidence in the derivation of the structure of benzene, Orbital picture, resonance in benzene, aromatic characters, Huckel’s rule.(2 hrs)
Reactions of benzene - nitration, sulphonation, halogenations reactivity, Friedel-crafts alkylation-reactivity, limitations, Friedel-crafts acylation. (2hrs)
Substituents, the effect of substituents on reactivity and orientation of monosubstituted benzene compounds towards electrophilic substitution reactions.(2hrs)
Structure and uses of DDT, Saccharin, BHC and Chloramine. (1hr)

UNIT II 7 Hours

Phenols* - Acidity of phenols, the effect of substituents on acidity, qualitative tests, Structure and uses of phenol, cresols, resorcinol, naphthols.(3 hrs)
Aromatic Amines - Basicity of amines, the effect of substituents on basicity, and synthetic uses of aryl diazonium salts (2 hrs)
Aromatic Acids* –Acidity, the effect of substituents on acidity and important reactions of benzoic acid. (2hrs)

UNIT III 5 Hours

Polynuclear Hydrocarbons
Synthesis and reactions, of Naphthalene, Phenanthrene, Anthracene, Diphenylmethane, Triphenylmethane and their derivatives.

UNIT IV 4 Hours

Cycloalkanes
Stabilities – Baeyer’s strain theory, limitation of Baeyer’s strain theory, Coulson and Moffitt’s modification, Sachse Mohr’s theory (Theory of strainless rings), reactions of cyclopropane and cyclobutane.
UNIT V
7 Hours

Heterocyclic compounds: Nomenclature and classification. (2 hrs)
Synthesis, reactions and medicinal uses of the following compounds/ derivatives Pyrrole, Furan, and Thiophene. (3 hrs)
Relative aromaticity and reactivity of Pyrrole, Furan and Thiophene. (2 hrs)

LIST OF EXPERIMENTS:
1. Preparation of 1-Phenylazo-2-naphthol
2. Preparation of meta-dinitrobenzene
3. Preparation of dibenzalacetone
4. Preparation of phenyl benzoate
5. Preparation of benzil
6. Preparation of salicylic acid
7. Preparation of hydrazones by monowave-assisted synthesis
8. Demonstration of recrystallisation

TEXT BOOKS:

REFERENCE BOOKS:
1. Mann F.G & Saunders B C. Practical organic chemistry. 4th edn. Pearson Education India; 2009

*Latest edition of the text books & reference books can be referred
SCOPE: The course deals with the various physical properties of drugs and excipients essential for formulation development. It discusses fundamental properties of drugs like solubility and partition, which helps to correlate drug disposition in biological systems. Different other properties of drug and excipients like polymorphism, optical rotation, dissociation constant etc gives a strong tool for their identification.

Diverse use of surfactants, complexes and buffers develop a strong base for formulation development, problem analysis and resolution. In the laboratory students perform basic experiments like solubility, partition coefficient, surface tension determination and analyse adsorption capacity and complexation of different samples. Students encouraged to perform by themselves, participate in group discussions during class hrs and follow good laboratory practices. This aids in the development of students' self-confidence, teamwork, and professionalism.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, student shall be able to

KNOWLEDGE

K1: Discuss the mechanism and significance of solubility of drugs. (Understand)
K2: Explain various solid state properties of drug molecules in designing the dosage forms (Understand)
K3: Describe various methods for determination of surface & interfacial tension(Understand)
K4: Classify type of complexes. (Comprehension)
K5: Criticize the effect of protein binding on drug action. (Evaluate)
K6: Differentiate the effects of factors on solubility of gas, liquids and solids in liquids (comprehension)

SKILL

S1: Design suitable buffer and isotonic media for pharmaceuticals.
S2: Measure the HLB value of surfactant
S3: Demonstrate the change in properties of drugs after complexation.
S4: Comment on the nature of acid/base based on its pKa value.
S5: Estimate the adsorption capacity of adsorbents.
S6: Assess the solubility of drugs in different solvents.
ATTITUDE
A1: Maintain laboratory/classroom decorum.
A2: Keep your attention in class.
A3: Follow Good Laboratory Practice guideline.
A4: Take an active role in class discussion.
A5: Stay away from distractions.
A6: Show compassion for our fellow beings.

COURSE CONTENTS:

UNIT I 7 Hours

Solubility of drugs:
Solubility expressions, mechanisms of solute solvent interactions, (1hr)
Ideal solubility parameters, Solvation & Association (1hr),
Quantitative approach to the factors influencing solubility of drugs, Diffusion principles in biological systems (2hrs).
Solubility of gas in liquids, Solubility of liquids in liquids, Binary solutions, Ideal solutions (1hr).
Raoul’t law, real solutions. Partially miscible liquids, Critical solution temperature (1hr) and applications.
Distribution law, its limitations and applications (1hr)

UNIT II 9 Hours

States of Matter and properties of matter: State of matter, changes in the state of matter, Latent heats, Vapour pressure, (1hr)
Sublination critical Point, Eutectic mixtures, Gases, Aerosols– inhalers (1hr)
Relative humidity, Liquid complexes (1hr)
Liquid crystals, Glassy states(1hr)
Solid crystalline, Amorphous & polymorphism(1hr).

Physicochemical properties of drug molecules: Refractive index(1hr)
Optical rotation(1hr)
Dielectric constant, Dipole moment(1hr)
Dissociation constant, Determinations and applications(1hr)

UNIT III 5 Hours

Surface and interfacial phenomenon: Liquid interface, surface & interfacial tensions (1hr), Surface free energy, Measurement of surface & interfacial tensions (1hr), Spreading coefficient(1hr), Adsorption at liquid interfaces, Surface active agents, HLB Scale, (1hr) Solubilisation, Wettability, Detergency, Adsorption at solid interface. (1hr)

UNIT IV 5 Hours

Complexation and protein binding: Introduction, Classification of complexation(1hr), Applications, methods of analysis(2hrs),
Protein binding, Complexation and drug action, (1hr)
Crystalline structures of complexes and thermodynamic treatment of stability constants. (1hr)

UNIT V 4 Hours

pH, buffers and Isotonic solutions: Sorensen’s pH scale, pH determination (electrometric and calorimetric), (1hr)
Applications of buffers, Buffer equation, Buffer capacity,(1hr) Buffers in pharmaceutical and Biological systems, Buffered isotonic solutions and calculations(2hrs)

LIST OF EXPERIMENTS:

1. Assess of the solubility of drug at room temperature in different solvents.
2. Describe the nature of acid/base based on pKa value obtained by Half Neutralization/ Henderson Hasselbalch equation.
3. Comment on the nature of drug (oxalic acid) based on partition co-efficient value in octanol and water system.
4. Remarks on the nature of the drug (benzoic acid) based on the partition co-efficient value in the benzene and water system.
5. Determination of % composition of NaCl in a solution using the phenol-water system by CST method
6. Determination of surface tension of given liquids by drop count and drop weightMethod
7. Analyze the nature of the surfactant based on the HLB number driven by the saponification method.
8. Summarize the adsorption capacity of charcoal by Freundlich and Langmuir adsorption isotherms.
9. Assess critical micellar concentration of surfactants
10. Determination of stability constant and donor-acceptor ratio of PABA-Caffeine
11. complex by solubility method
12. Calculate the stability constant and donor-acceptor ratio of Cupric-Glycine
13. complex by pH titration method

TEXT BOOKS:

REFERENCES BOOKS:

Latest edition of the text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Microbiology (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>III</td>
<td>BP303T</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>III</td>
<td>BP311P</td>
</tr>
</tbody>
</table>

SCOPE: This course deals with the fundamental aspects of microorganisms that are relevant to the field of pharmaceutical sciences, including their classification, morphology, laboratory cultivation, identification and maintenance. The course includes an in-depth examination of sterilization techniques and the different methods used to control and eliminate microbial contamination in pharmaceutical manufacturing processes. Students will learn about different types of disinfectants, their modes of action, and their application in maintaining aseptic conditions in pharmaceutical facilities. Microbiological assay techniques used for the estimation of antibiotics, vitamins, and other pharmaceutical substances will be covered in detail.

The course also focuses on the principles and practices of aseptic area design and maintenance, which are essential for ensuring the sterility of pharmaceutical products. Students will gain knowledge about the principles of microbial control in pharmaceutical environments, including cleanrooms, air handling, and water systems. The study of microbial spoilage and preservation methods for pharmaceutical products is included, helping students understand the factors that can lead to product deterioration and the strategies to prevent it.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Explain the methods of cultivation and preservation of microorganisms.

K2: Describe the various microbiological assays & microbiological standardization for pharmaceuticals.

K3: Identify different types of microorganisms relevant to pharmaceutical sciences.

K4: Analyse the principles and applications of microbial quality control in pharmaceutical manufacturing.

K5: Demonstrate different types of staining techniques in identifying microbes.

K6: Design appropriate sterilization and disinfection protocols for pharmaceutical manufacturing processes.

SKILLS

S1: Identify microorganisms relevant to pharmaceutical microbiology, such as bacteria, fungi, and viruses.

S2: Apply aseptic techniques and laboratory protocols effectively in handling microorganisms.
S3: Perform microbial isolation, identification, and characterization techniques in the pharmaceutical microbiology laboratory.
S4: Acquire hands-on skills in performing microbiological tests, including microbial enumeration, and antimicrobial susceptibility testing.
S5: Design experiments to evaluate the antimicrobial efficacy of pharmaceutical agents.
S6: Select appropriate techniques for microbial control and sterilization in pharmaceutical settings.

ATTITUDES
A1: Appreciate the importance of maintaining a clean and hygienic work area to prevent microbial contamination.
A2: Demonstrate ethical conduct in the use of microorganisms and adherence to safety guidelines.
A3: Cultivate a scientific curiosity and a desire for continuous learning.
A4: Display patience and attention to detail while working.
A5: Exhibit an understanding of the impact of microbial contamination on the safety and efficacy of pharmaceutical products.
A6: Foster a sense of responsibility and professionalism while working in a laboratory environment.

COURSE CONTENTS:

UNIT I 9 Hours

Basics of microbiology:
Introduction, history of microbiology, its branches, scope and its importance. Introduction to Prokaryotes and Eukaryotes (1hr).
Study of different types of phase contrast microscopy and dark field Microscopy (1hr).

Bacteria:
Study of ultra-structure and morphological classification of bacteria(1hr)
Nutritional requirements(1hr)
Raw materials used for culture media and physical parameters for its growth(1hr)
Bacterial growth curve, isolation, and preservation methods for pure cultures(1hr)
Cultivation of aerobes & anaerobes(1hr)
Quantitative measurement of bacterial growth -total & viable count(1hr)
Identification of bacteria using staining techniques (simple, Gram’s & acid fast staining) and biochemical tests (IMViC) (1hr).

UNIT II 8 Hours

Fungi & viruses:
Study of morphology(1hr)
Classification (1hr)
Reproduction/replication(1hr)
Pharmaceutical application(1hr)
Cultivation of Fungi and Viruses with suitable examples(1hr).
Corona viruses in Humans - COVID-19; Structural details(1hr), Pathophysiology(1hr),
Clinical findings & its mode of treatment(1hr).
UNIT III 5 Hours

Sterilization:
Study of principle, procedure, merits, demerits and applications of:
Physical, chemical, gaseous (1hr),
Radiation and mechanical method of sterilization (1hr).
Evaluation of the efficiency of sterilization methods (1hr).
Sterility indicators (1hr).
Sterility testing of products including solids, liquids, ophthalmic and other sterile products,
according to IP, BP and USP (1hr).

UNIT IV 3 Hours

Disinfectants:
Classification and mode of action of disinfectants (1hr).
Factors influencing disinfection, antiseptics and their evaluation (1hr).
Evaluation of disinfectants, bactericides & Bacteriostatics (1hr).

UNIT V 5 Hours

Aseptic area and microbial control:
Designing of aseptic area, laminar flow equipments (1hr),
Study of different sources of contamination in an aseptic area and methods of prevention, clean
area classification (1hr).
Microbiological assays:
Principles and methods of different microbiological assay, Assessment of a new antibiotic
(1hr).
Methods for standardization of antibiotics and vitamins (1hr).
Microbial Spoilage:
Types of spoilage, factors affecting the microbial spoilage of pharmaceutical products, sources
and types of microbial contaminants, assessment of microbial contamination and spoilage (1hr).

LIST OF EXPERIMENTS:
1. Introduction and study of different equipments and processing, e.g., B.O.D. incubator,
2. laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer, refrigerator,
3. microscopes used in experimental microbiology.
4. Sterilization of glassware, preparation and sterilization of culture media for bacteria and
fungi.
6. Aseptic transfer of sterile nutrient agar into the sterile culture tube / sterile perti plate.
7. Aseptic transfer of micro-organisms into the sterile agar slant/ sterile nutrient agar plate.
8. Staining methods- Simple, Grams staining and acid fast staining
9. Isolation of pure culture of micro-organisms by simple streaking, multiple streak plate
technique and other techniques.
10. Total viable count of bacteria in soil culture by pour plate and spread plate method
11. Motility determination of bacteria by Hanging drop method.
13. Sterility testing of pharmaceuticals.
TEXT BOOKS:

REFERENCE BOOKS:

*Latest edition of the text books & reference books can be referred
Course Title	**L**	**T**	**P**	**Total Hrs.**	**Credits**	**Semester**	**Course Code**
Pathophysiology (T) | 2 | 0.5 | 0 | 30 | 2.5 | III | BP304T

SCOPE: This course is designed to impart a basic knowledge of the physiological changes and mechanisms underlying disease processes. It focuses on understanding how normal physiological functions are disrupted or altered in various disease states. It emphasizes the mechanisms and processes involved in the development, progression, and outcomes of different diseases. It covers a wide range of diseases, including infectious diseases, genetic disorders, autoimmune diseases, metabolic disorders, cardiovascular diseases, neurological disorders. This also explores the causative factors and risk factors that contribute to the development of diseases. It investigates the role of genetics, environmental factors, lifestyle choices, infections, and other triggers in disease initiation and progression. It also addresses how disease processes can lead to altered vital signs, organ dysfunction, pain, and other clinical presentations.

COURSE LEARNING OUTCOMES:

Upon successful completion of the subject student shall be able to

KNOWLEDGE

K1: Define the basic terminology related to pathophysiology

K2: Explain the basic nature of disease processes in terms of etiology, epidemiology, natural history, and structural and functional abnormalities in the body systems

K3: Discuss the pathophysiologic mechanisms responsible for diseases of major public health importance

K4: Classify diseases of various body systems and how they manifest clinically

K5: Describe Basic principles of Cell Injury Adaptation and explain the concept of inflammation and repair

K6: Enumerate the morphologic (gross & microscopic) changes occurring as a result of different injuries in various orga

SKILLS:

S1: Differentiate between normal and abnormal inflammatory responses.

S2: Identify factors that may impair the wound healing process, such as underlying diseases, medications, and lifestyle factors.
S3: Propose various disorders based on their underlying pathophysiological mechanisms.
S4: Differentiate between structural and functional abnormalities of CNS, CVS, respiratory, urinary, skeletal and reproductive system.
S5: Relate specific pathophysiological alterations to the clinical manifestations observed in patients.
S6: Recognize the signs and symptoms of infectious diseases and correlate them with diagnostic test results for accurate diagnosis.

ATTITUDE:

A1: Appreciate and respect the diversity of patients' cultural backgrounds, beliefs, and values in the context of pathophysiological conditions.
A2: Educate patients about their disorders, including its pathophysiology, risk factors, and management strategies.
A3: Recognize the emotional and psychological aspects of illness and demonstrating sensitivity in interactions with patients, families, and caregivers.
A4: Provide lifestyle recommendations, such as diet modification, exercise, and stress management, to optimize overall health.
A5: Communicate and educate others on infection control practices to prevent the spread of infectious diseases.
A6: Participate in various programs related to education on safe sex practices, risk reduction strategies, and the importance of regular STD screenings.

COURSE CONTENTS:

UNIT I 6 Hours

Basic principles of Cell injury and Adaptation:
Introduction: (1 hr)
Homeostasis, Components, and Types of Feedback systems,
Cell injury: (1 hr)
Causes of cellular injury, Pathogenesis (Cell membrane damage, Mitochondrial damage, Ribosome damage, nuclear damage), Morphology of cell injury (2 hrs)
Cell swelling, Intra cellular accumulation, Calcification, Enzyme leakage and Cell Death (necrosis and apoptosis) Acidosis & Alkalosis, Electrolyte imbalance

Basic mechanism involved in the process of inflammation and repair
Clinical signs of inflammation, Different types of Inflammation, Mechanism of Inflammation – Alteration in vascular permeability and blood flow, migration of WBC’s. Basic principles of wound healing in the skin: Classification of wounds Stages of wound healing, Mechanism of tissue repair, factors affecting wound healing (2 hrs)

UNIT II

Cardiovascular System:
Hypertension, Congestive heart failure, Ischemic heart disease (angina, atherosclerosis) (3 hrs)

Respiratory system
Asthma, Chronic obstructive airway diseases and Emphysema (2 hrs)

Renal system
Acute and chronic renal failure (1 hr)

UNIT III

Hematological diseases
Anaemia: Iron deficiency anaemia, Megaloblastic anaemia (vitamin B12 and folic acid)
Sickle cell anaemia (2 hrs)

Endocrine system
Diabetes, Thyroid disorders, Disorders of sex hormones: Menstrual function and fertility disorders, Polycystic ovary syndrome (PCOS), Hypogonadism and gynecomastia (3 hrs)

Nervous system:
Epilepsy, Stroke (ischemic and haemorrhagic stroke), Parkinsonism (2 hrs)

Psychiatric disorders:
Depression, Schizophrenia and Alzheimer’s disease (2 hrs)

UNIT IV

Diseases of bones and joints:
Rheumatoid arthritis and Gouty arthritis, Osteoporosis (2 hrs)

Gastrointestinal system:
Peptic ulcer, Hepatitis (A, B, C, D, E), Liver cirrhosis and alcoholic liver diseases (2 hrs)

Cancer: Etiologic factors related to the development of cancer
Molecular basis for cancer development and progression
Benign and malignant tumours, Tumour Invasion and metastasis (2 hrs)

UNIT V 3 Hours

Infectious diseases:
Malaria, Tuberculosis, Leprosy (2 hrs)

Sexually transmitted disease:
AIDS (1 hr)

TEXT BOOKS:
2. Harsh Mohan; Textbook of Pathology; 8th edn; Jaypee Brothers Medical Publishers (P) Ltd. India; 2022

REFERENCE BOOKS:

Latest edition of the text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy And Phytochemistry I (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>III</td>
<td>BP305T</td>
</tr>
<tr>
<td>Pharmacognosy And Phytochemistry I (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>III</td>
<td>BP312P</td>
</tr>
</tbody>
</table>

SCOPE: This course is designed to impart fundamentals of Pharmacognosy and provides students with a comprehensive understanding of sources of drugs such as plants, animals, marine & tissue culture; classification of crude drugs based on morphological, taxonomical, chemical, pharmacological attributes. It also introduces history, scope and development of pharmacognosy.

The course deals with different aspects of cultivation, collection, processing and storage of crude drugs of natural origin. Also, it offers basic knowledge on plant tissue culture and its application in the production of phytopharmaceuticals. Furthermore, the course covers the study of the chemistry, sources, preparation, evaluation, preservation, storage, therapeutic/commercial utility of drugs derived from natural products. The scope of the course is to equip the students with the necessary knowledge and skills to detect adulteration of crude drug and different methods for their evaluation. The students encouraged to develop leadership qualities and teamwork.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Explain the history, scope and development of Pharmacognosy.
K2: Discuss the application of drugs from natural origin and their chemical nature and uses.
K3: Describe the techniques for cultivation, collection and evaluation of crude drugs.
K4: Discuss fundamental aspects of plant tissue culture.
K5: Classify the crude drugs from natural origin.
K6: Enumerate the factors influencing cultivation of medicinal plants.

SKILL

S1: Analyze the crude drugs by microscopic methods.
S2: Identify the crude drugs by physical methods.
S3: Evaluate the crude drugs by chemical methods.
S4: Determine the purity of crude drugs by quantitative microscopic methods.
S5: Analyze the leaf drugs by determining the leaf constants.
S6: Distinguish the different crude drugs based on their organoleptic characters.
ATTITUDE
A1: Enhance their self-awareness and personal growth.
A2: Learn to cope with challenges, setbacks, and changes.
A3: Embrace a lifelong learning mindset.
A4: Develop leadership qualities and skills.
A5: Cultivate communication and collaboration skills.
A6: Improve critical thinking skills.

COURSE CONTENTS

UNIT I 12 Hours

Introduction to Pharmacognosy:
Definition, history scope and development of Pharmacognosy (1 hr)
Sources of Drugs – Plants, Animals, Marine & Tissue culture (2 hrs)

Classification of drugs:
Alphabetical, morphological, taxonomical, Chemical, Pharmacological, Chemo and sero
taxonomical classification of drugs (2 hrs)
Organized drugs, Unorganized drugs (dried latex, dried juices, dried extracts, gums and
mucilages, Oleoresins and oleo-gum-resins). (1 hr)

Quality control of Drugs of Natural Origin:
Adulteration of drugs of natural origin. (2 hrs)

Different methods for evaluation of crude drugs
Organoleptic/Morphological methods (1 hr)
Microscopic methods: (1 hr)
Quantitative microscopy
Lycopodium spore method
Leaf measurements
Physical, Chemical Biological methods (2 hrs)

UNIT II 8 Hours

Cultivation, Collection, Processing and storage of drugs of natural origin:
Cultivation and Collection of drugs of natural origin (2 hrs)
Processing and storage of drugs of natural origin (1 hr)
Factors influencing cultivation of medicinal plants. (2 hrs)
Plant hormones and their applications. (1 hr)
Polyploidy, mutation and hybridization with reference to medicinal plants (1 hr)
Conservation of medicinal plants (1 hr)

UNIT III 5 Hours

Plant tissue culture:
Historical development of plant tissue culture
Types of cultures. (1 hr)
Nutritional requirements (1 hr)
Growth and their maintenance (1 hr)
Applications of plant tissue culture in pharmacognosy (1 hr)
Edible vaccines (1 hr)

UNIT IV 5 Hours

Primary metabolites:
General introduction, detailed study with respect to chemistry, Sources, Preparation, Evaluation, Preservation, Storage, Therapeutic used and commercial utility as pharmaceutical aids and/or Medicines for the following Primary metabolites:
Carbohydrates: Acacia, Agar, Honey, Tragacanth, Isapgol (1 hr)

Proteins and Proteolytic enzymes: casein, gelatin, Papain, Bromelain, Pepsin Serratiopetidase, Urokinase, Streptokinase (1 hr)

Lipids (Waxes, fats, fixed oils): Castor oil, Chaulmoogra oil, Bees Wax, Wool Fat (1 hr)
Study of biological source, Chemical nature and uses of drugs of natural origin containing following drugs: (1 hr)
Fibers – Cotton, Jute, Hemp
Hallucinogens
Teratogens
Natural allergens

Marine Drugs: Novel medicinal agents from marine sources (1 hr)

LIST OF EXPERIMENTS:

1. Analysis of crude drugs by chemical tests:
 (i) Tragacanth (ii) Acacia (iii) Agar (iv) Gelatin (v) starch (vi) Honey (vii) Castor oil
2. Determination of stomatal number and index
3. Determination of vein islet number, vein islet termination and palisade ratio.
4. Determination of size of starch grains, calcium oxalate crystals by eye piece Micrometer.
5. Determination of Fiber length and width
6. Determination of number of starch grains by Lycopodium spore method
7. Determine and compare the following parameter of the crude drugs:
 - Extractive values
 - Moisture content
 - Swelling index
 - Foaming index

TEXT BOOKS:
REFERENCE BOOKS:

ADDITIONAL READING MATERIALS:

Latest edition of the text books & reference books can be referred
SCOPE: This course is designed to impart basic knowledge about various disease conditions and its management and give an idea about various national health programmes initiated by Government of India. It encompasses various theoretical concepts and principles related to the social, behavioural, and preventive aspects of pharmacy practice. Social and Preventive Pharmacy explores the principles of public health and its application to pharmacy practice. It involves studying epidemiology, health promotion, disease prevention, and health education.

Prevention plans for nutritional deficiencies involve strategies aimed at ensuring individuals and communities to a balanced and adequate diet that meets their nutritional needs. These learning outcomes aim to equip students with a comprehensive understanding of the general principles for disease control, enabling them to contribute to public health and thereby prevention and management of various diseases. The course also teaches skills necessary to contribute effectively to the functioning of a Primary Health Centre, promoting primary healthcare principles and addressing the healthcare needs of the community. It enables them to contribute effectively to the implementation, delivery, and monitoring of national health programs, ultimately improving healthcare access, quality, and positive outcomes for individuals and communities. The course also promotes health education in school. Overall, the scope of this course is to equip pharmacy students with the knowledge and skills necessary to contribute to public health initiatives, engage in health promotion, and prevent diseases through the application of pharmaceutical care principles and public health strategies.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Describe prevention plan for nutritional deficiencies
K2: Explain the general principles for the control of various diseases
K3: Outline the objectives and goals of various National Health Programs
K4: Discuss the various program initiated by Government of India for promotion of health.
K5: List the functions of primary health center
K6: Identify types of biomedical waste and principle of its segregation.

SKILL

S1: Apply the various responsibilities of Pharmacist in primary health center
S2: Review the importance of personal hygiene and health
S3: Evaluate the importance of universal immunization program
S4: Interpret the sociocultural factors related to health and disease
S5: Examine the impact of national health program in India
S6: Justify the general principles used in preventive medicine

ATTITUDE
A1: Participate in various National healthcare program
A2: Practice the habit of personal hygiene and health care
A3: Assist the health education
A4: Appreciate the HIV and AIDS control Program in India and global
A5: Examine the national health intervention program for mother and child
A6: Plan for community health services in rural area

COURSE CONTENTS:

UNIT I
5 Hours

Determinants and indicators of Health

Concept of health and disease: Definition, concepts and evaluation of public health. Understanding the concept of prevention and control of disease, social causes of diseases and social problems of the sick. (1hr)

Vitamins: Classification, sources, biological importance and deficiency disorders. (1hr)

Sociology and health: Socio cultural factors related to health and disease, Impact of urbanization on health and disease, Poverty and health (1hr)

Hygiene and health: personal hygiene and health care; avoidable habits (1hr)

Social and health education: Food in relation to nutrition and health, Balanced diet, Nutritional deficiencies, Malnutrition and its prevention (1hr)

UNIT II
13 Hours

Preventive medicine

General principles of prevention and control of diseases such as cholera (1hr)
SARS, Ebola virus (1hr)
Influenza (1hr)
Acute respiratory infections(1hr)
Malaria (1hr)
Chicken Guinea (1hr)
Dengue (1hr)
Lymphatic Filariasis (1hr)
Pneumonia (1hr)
Hypertension (1hr)
Diabetes mellitus (1hr)
Cancer (1hr)
Drug addiction-drug substance abuse (1hr)

UNIT III
4 Hours

National health programs, its objectives, functioning and outcome of the following: HIV AND AIDS control program, Integrated disease surveillance program (IDSP) (1hr)
National leprosy control program, Immunity and immunizing agents, Universal immunization program, Family Planning Methods (1hr)
National mental health program, National program for prevention and control of deafness (1hr)
National program for control of blindness, Pulse polio program (1hr)

UNIT IV 5 Hours
National health intervention program for mother and child (1hr)
National family welfare program, National tobacco control program (1hr)
National Malaria Prevention Program, National program for the health care for the elderly (1hr)
Social health program; role of WHO in Indian national program, TB and RNTCP (1hr)
Improvement in rural sanitation, national urban health mission, Health promotion and education in school (1hr)

UNIT V 1 Hours
Community services in rural, urban and school health: Functions of PHC (1hr)

UNIT VI 2 Hours
Biomedical Waste Management: Types of biomedical waste (1hr)
Principle of segregation and processing of bio-waste (1hr)

TEXT BOOKS:

REFERENCE BOOKS:
2. Ramesh A, Community Pharmacy Practice, 1st edn. BSP publishers; Hyderabad; 2020.
 *Latest edition of the text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Sciences (T)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2</td>
<td>III</td>
<td>BP307T</td>
</tr>
</tbody>
</table>

SCOPE: Environmental Sciences is the scientific study of the environment. It includes the different components with which the environment is made of and the way in which it works in a sustainable way.

Study of environmental sciences includes the impact of human activity in the environment so as to find ways and means to avoid the negative impact of human activity. For this the study includes not only the physical, chemical, geological and biological characters of the environment but also the social and cultural factors of human societies.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: List different types of natural resources.
K2: Identify the difference between the types of natural resources.
K3: State the concept of sustainable development.
K4: Describe the concept of ecosystem.
K5: Outline the nature and importance of biodiversity.
K6: Enumerate different types of materials that cause pollution.

SKILL

S1: Distinguish the importance of components, structure and function of an ecosystem.
S2: Assess the different threats to biodiversity and different types of conservation.
S3: Categorize the impacts of different types of pollutants in the aerial environment.
S4: Categorize the impacts of different types of pollutants in aquatic environment.
S5: Categorize the impacts of different types of pollutants in terrestrial environment.
S6: Categorize the impacts of Hospital waste, Hazardous waste.

ATTITUDE

A1: Appreciate the arrangement of components for attaining the structure and function of the ecosystem.
A2: Participate in alleviating the threats to ecosystems
A3: Cooperate in the conservation of biodiversity
A4: Assess the impacts of different pollutants on the environment and in the wellbeing of organisms.
A5: Justify the need of environment friendly concepts
A6: Justify the need of environment friendly management plans to reduce the negative impact on the environment

COURSE CONTENTS

UNIT I
1. Renewable and non renewable Natural resources. (1hr)
2. Over exploitation and conservation of natural resources -- forest, water. (1hr)
3. Food, energy. (2hrs)
4. Mineral and land resources. (1hr)
5. Concept of sustainability, sustainable development. (1hr)
6. Concept of zero waste. (1hr)
7. Concept of three R’s (Reduce, Reuse and Recycle). (1hr)

UNIT II
1. Concept of ecosystem. Types of ecosystems, Components of an ecosystem. (1hr)
2. Structure and function of an ecosystem. (1hr)
3. A brief description of forest ecosystem. (1hr)
4. Food chain and food web, ecological pyramids. (1hr)
5. Biogeochemical cycle: examples (nitrogen and phosphorous). (1hr)
6. Threats to ecosystems. (1hr)
7. Biodiversity, types of biodiversity. (1hr)
8. Hot spots of biodiversity. (1hr)
9. Threats to biodiversity. (1hr)
10. Conservation of biodiversity. (1hr)

UNIT III
1. Pollution of air and its impact. (1hr)
2. Acid rain. (1hr)
3. Global warming and climate change. (1hr)
4. Ozone layer depletion. (1hr)
5. Water pollution and its impact. (1hr)
6. Soil pollution and its impact. (1hr)
7. Industrial and urban solid wastes, Hospital waste, Hazardous waste. (1hr)
8. Plastic pollution, E-waste. Disposal of solid wastes. (1hr)
9. Ecological foot prints-brief description of carbon footprint and water footprint. (1hr)
10. Industrial ecosystems. (1hr)
11. Green technology, Green business, Green buildings, (1hr)
12. Sustainable (green) cities. (1hr)

TEXT BOOKS:

1. Deswal S and Deswal A -- A basic course in environmental studies Dhanpat rai and Co (P) Ltd.
2. Palanisamy P. N., Manikandan P., Geetha A., Manjula Ran -- Environmental Science, Pearson Education.
5. Bharucha Erach - The Biodiversity of India, Mapin Publishing Pvt Ltd., Ahmedabad–380013, India,

REFERENCE BOOKS:

WEBSITES:

2. en.wikipedia.org/wiki/Environmental_science

Latest edition of text books and reference books can be referred.
Amrita Value Programme- Strategic Lessons From Mahabharata (T)

<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amrita Value Programme- Strategic Lessons From Mahabharata (T)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>III</td>
<td>22ADM201</td>
</tr>
</tbody>
</table>

SCOPE: The course is designed to impart knowledge about Mahabharata's depths and richness and its eternal values with respect to our Indian culture. To equip students with a knowledge of this epic and enable them to make a distinction between *dharma* and *adharma*, *right* and *wrong*, *morality* and *immorality*, and *goodness* and *badness* with an emphasis on Kaurvas (represented evil) and Pandavas (symbolized for goodness). The epic also discusses the inspirational female characters and regional tales from Mahabharata to gain a coherent understanding of its Indian values and culture. This epic also critically analyzes the four goals of life: *kama* (pleasure), *artha* (wealth), *dharma* (duty) and *moksha* (liberation).

This epic also takes into consideration of Shri Krishna’s strategies in Mahabharata, and lessons of dharma in Bhagavad Gita, and correlates them with present strategic management concepts. The strategic lessons from Mahabharata identify strategies and divinations that lie latent in this Ishihasa and convey them to the students for further ruminations.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to:

KNOWLEDGE

K1: Discuss the foundational concepts of Mahabharata (Understanding)
K2: Describe the characteristics of the classical Indian epic, with special reference to the Mahabharata. (Understanding)
K3: Explain the stories of Adi-Parva, Sabha-Parva, Aranyak-Parva, Virata-Parva, Udyoga-Parva and Bhishma-Parva(Understanding)
K4: List the most important aspect of Bhishma Parva as Bhagavad Gita(Understanding)
K5: Discuss the stories of Drona-Parva, Karna-Parva, Shalya-Parva, Sauptika-parva, Shri-Parva, Shanti-Parva and Anusasana-parva(Understanding)
K6: Enumerate the stories of Ashvamedhi-parva, Ashramavasika-parva, Mausala-parva, Mahaprasthanika-parva and Svargarohana-parva(Understanding)

SKILL

S1: Incorporate various strategic lessons suggested in Mahabharata in day-to-day life.
S2: Apply the principles of life skill ideas discussed in Mahabharata for materialistic life
S3: Design what Mahabharata is and what it is not, its contemporary relevance, and how it becomes part of Indians’ day-to-day life
S4: Analyse inspirational female characters and regional tales from Mahabharata to gain a coherent understanding of its Indian values and culture.
S5: Assemble the imperativeness of Mahabharata in everyday life.
S6: Critically evaluate an overall idea of its contents, the multifarious lessons and possibilities of Mahabharata.

ATTITUDE

A1: Embrace the powerful influence of a good attitude on life and happiness
A2: Appreciate female characters, regional tales, traditions, and the spirit of harmonious living.
A3: Appreciate the relevance of Mahabharata for modern times.
A4: Follow the concepts of learning to live together, develop the attitude of sharing and care for a fellow being
A5: Display an attitude of honesty and sincerity and take responsibility for the societal needs
A6: Follow the principle of Mahabharata and Practicing self-compassion for others

COURSE CONTENTS

UNIT I - IV 4 Hours
Mahābhārata - A Brief Summary (1hr)
A Preamble to the Grand Itihāsa (1hr)
The Unbroken Legacy (1hr)
Dharmic insights of a butcher (1hr)

UNIT V – VIII 4 Hours
The Vows we take: Pratijñā (1hr)
Mahābhārata - The Encyclopaedia for Kingship and Polity Acumen (1hr)
Karna: The Maestro that Went Wide of the Mark (1hr)
Strategical Silhouette of An Extraordinary Peace Mission (1hr)

UNIT IX- XI 4 Hours
Yajñaseni, A Woman from Fire (1hr)
Popular Regional Tales (2hr)
Death and Deathlessness (1hr)

UNIT XII- XIV 3 Hours
Mahabharata- An All-Encompassing Text (1hr)
Mahabharatha- Whats and What Nots (1hr)
Mahābhārata in Adages (1hr)
Mahabharata
TEXT BOOK:

REFERENCE BOOK:

*Latest edition of the text books & reference books can be referred
SEMESTER-IV
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Organic Chemistry –III (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>IV</td>
<td>BP401T</td>
</tr>
</tbody>
</table>

SCOPE: This course imparts knowledge of stereo-chemical aspects of organic compounds and organic reactions, important named reactions, and the chemistry of important heterocyclic compounds. The course deals with optical isomerism, elements of symmetry, and sequence rule of optically active agents. The course also covers racemic modification, resolution, and asymmetric synthesis. Introduction of geometrical isomerism, methods of determining the configuration of geometrical isomers, atropisomerism, and stereospecific and stereoselective reactions were described.

The syllabus emphasizes the synthesis and reactions of various classes of heterocyclic compounds. The course also deals with various naming reactions of reduction, oxidation and rearrangement reactions.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Describe the synthesis and reactions of heterocyclic ring-containing compounds (Remembering).

K2: Explain the basic principles of stereospecific/stereoselective reactions and asymmetric synthesis (Comprehension).

K3: Apply the basic concepts between stereo and geometrical isomerism with examples (Application).

K4: Determine the synthetic importance of organic naming reactions (Analysis).

K5: Categorize the different mechanisms of reduction reactions (Synthesis).

K6: Predict the orientation of electrophilic substitution reactions of heterocyclic compounds (Evaluation).

SKILL

S1: Demonstrate the resolution of racemic mixtures.

S2: Differentiate the D & L system of nomenclature of optical isomers, sequence rules, R&S system of optical isomers.

S3: Perform various types of rearrangement reactions.

S4: Identify the various types of reduction reactions.

S5: Detect the aromaticity and orientation of heterocyclic compounds.

S6: Analyse the various types of oxidation reactions.

ATTITUDE

A1: Support others to learn and explore further
A2: Participate actively with a positive mind-set
A3: Embrace and be open to new ideas.
A4: Cooperate with students and others in the lab activities.
A5: Develop critical thinking of new schemes.
A6: Be sincere, punctual and ethical.

COURSE CONTENTS

Note: To emphasize on definition, types, mechanisms, examples, uses/applications

UNIT I 9 Hours
Stereo Isomerism:
Optical isomerism – Optical activity, enantiomers, diastereoisomerism, meso compounds (1 hr)
Elements of symmetry, chiral and achiral molecules (2 hrs)
D &L system of nomenclature of optical isomers, sequence rules, R&S system of nomenclature of optical isomers (2 hrs)
Racemic modification and resolution of racemic mixture. (3 hrs)
Asymmetric synthesis: partial and absolute (1 hr)

UNIT II 5 Hours
Geometrical isomerism:
Nomenclature of geometrical isomers (Cis Trans, EZ, Syn Anti systems) (1 hr)
Methods of determination of configuration of geometrical isomers (1 hr)
Conformational isomerism in Ethane, n-Butane and Cyclohexane. (1 hr)
Stereo isomerism in biphenyl compounds (Atropisomerism) and conditions for optical activity. (1 hr)
Stereospecific and stereo selective reactions (1 hr)

UNIT III 8 Hours
Synthesis, reactions and medicinal uses of following compounds/derivatives:
Pyrazole, Imidazole, Oxazole and Thiazole. (3 hrs)
Pyridine, Quinoline, Isoquinoline, Acridine and Indole. Basicity of pyridine. (3 hrs)
Synthesis and medicinal uses of Pyrimidine, Purine, azepines and their derivatives. (2 hrs)

UNIT IV 8 Hours
Reactions of synthetic importance
Metal hydride reduction (NaBH4 and LiAlH4), Clemmensen reduction, Birchreduction, Wolff Kishner reduction. (3 hrs)
Oppenauer-oxidation and Dakin reaction. (2 hrs)
Beckmanns rearrangement and Schmidt rearrangement. (2 hrs)
Claisen-Schmidt condensation (1 hr)
TEXT BOOKS:

1. Agarwal O.P. Reactions and reagents. 56th edn. Goel Publishing house, India; 2023
2. Bansal R.K, Heterocyclic chemistry. 6th edn. New age international private limited.; India:2019

REFERENCE BOOKS:

*Latest edition of the text books & reference books can be referred
Medicinal Chemistry-I (T)

SCOPE: Medicinal Chemistry-I applies the principles and techniques of chemistry to identify, design, and optimize compounds that can be used as drugs for the treatment of various diseases. The course includes the development, chemical classification, chemical structure, synthesis, mechanism of action, and uses of important classes of given medicinal compounds. This course will introduce students to structure activity relationships, which helps to predict and evaluate the therapeutic effects of different drugs.

Additionally, the course will demonstrate the significance of physicochemical parameters in the biological action of various therapeutic agents. Overall, the course medicinal Chemistry-I makes the students to understand the basics of drug discovery, design, and development of various therapeutic agents focused on improving human health.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Classify the medicinal compounds based on the chemical structure
K2: Interpret the Structural Activity Relationship of different class of drugs
K3: Identify the effects of physicochemical properties on biological action and drug metabolic pathways
K4: Outline the synthetic pathway of medicinally important drug molecules
K5: Correlate the mechanism of action and the therapeutic value of drugs
K6: Apply the principles and techniques of chemistry in the design and synthesis of therapeutic agents

SKILL

S1: Demonstrate the synthetic pathway of new therapeutic agents
S2: Analyse the effects of various functional groups in the therapeutic activity of drugs
S3: Determine the drug targets and its therapeutic potential with respect to drug development
S4: Apply the significance of physicochemical parameters in the therapeutic actions of drugs
S5: Differentiate the important medicinal drugs into water soluble and lipid soluble based on their structure
S6: Predict the binding affinity of drugs to receptors based on the different chemical substituents
ATTITUDE

A1: Participate in group discussions for the design of a new synthetic pathway of therapeutic agents
A2: Appreciate the relevance of Structural Activity Relationship in the biological action of drugs
A3: Assist in classifying the drugs based on the heterocyclic rings present in the compound
A4: Recognise the contribution of Medicinal Chemists, Scientists and Pharmacists involved the discovery and development of drugs
A5: Accept the significance of Medicinal Chemistry in the healthcare system
A6: Follow a safe, green and eco-friendly approach in developing the synthetic scheme of medicinal compounds

COURSE CONTENTS

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

UNIT I 6 Hours
Introduction to Medicinal Chemistry
History and development of medicinal chemistry (1hr)
Physicochemical properties in relation to biological action:
Ionization, Solubility, Partition Coefficient, Hydrogen bonding (2 hrs)
Protein binding, Chelation, Bioisosterism, Optical and Geometrical isomerism (2 hrs)
Drug metabolism: Drug metabolism principles- Phase I and Phase II, Factors affecting drug metabolism including stereo chemical aspects. (1hr)

UNIT II 10 Hours
Drugs acting on Autonomic Nervous System
Adrenergic Neurotransmitters: Biosynthesis and catabolism of catecholamine, Adrenergic receptors: Alpha & Beta and their distribution (1 hr)
Sympathomimetic agents: SAR of Sympathomimetic agents (1hr)
Direct acting: Nor-epinephrine, Epinephrine, Phenylephrine*, Dopamine, Dobutamine, Isoproterenol, Terbutaline, Methylldopa, Clonidine (2 hrs)
Salbutamol, Naphazoline, Oxymetazoline and Xylometazoline (1hr)
Indirect acting agents: Amphetamine, Methamphetamine, Hydroxyamphetamine, Pseudoephedrine, Propylhexedrine (1 hr)
Agents with mixed mechanism: Ephedrine, Metaraminol (1 hr)
Adrenergic Antagonists:
Alpha adrenergic blockers: Tolazoline*, Phentolamine, Phenoxybenzamine, Prazosin, Dihydroergotamine. (1 hr)
Beta adrenergic blockers: SAR of beta blockers, Propranolol*, Labetolol, Atenolol, Bisoprolol, Esmolol, Metoprolol, Carvedilol. (2 hrs)
UNIT III 10 Hours

Drugs acting on Autonomic Nervous System

Cholinergic neurotransmitters: Biosynthesis and catabolism of acetylcholine, Cholinergic receptors (Muscarinic & Nicotinic) and their distribution (1hr)
Parasympathomimetic agents: SAR of Parasympathomimetic agents (1hr)
Direct acting agents: Acetylcholine, Carbachol*, Bethanechol, Methacholine, Pilocarpine (1hr)
Indirect acting/ Cholinesterase inhibitors (Reversible & Irreversible): Physostigmine, Neostigmine*, Pyridostigmine, Edrophonium chloride, Tacrine hydrochloride, Cholinesterase reactivator: Pralidoxime chloride (3 hrs)
Cholinergic Blocking agents: SAR of cholinolytic agents, Solanaceous alkaloids and analogues: Atropine sulphate, Hyoscymamine sulphate, Scopolamine hydrobromide, Homatropine hydrobromide, Ipratropium bromide* (2 hrs)
Synthetic cholinergic blocking agents: Tropicamide, Cyclopentolate hydrochloride, Clidinium bromide, Dicyclomine hydrochloride*, Procyclidine hydrochloride*, Glycopyrrolate, Methantheline bromide, Benztropine mesylate, Orphenadrine citrate, Biperidine hydrochloride (2 hrs)

UNIT IV 11 Hours

Drugs acting on Central Nervous System

A. Sedatives and Hypnotics:
Benzodiazepines: SAR of Benzodiazepines, Chlordiazepoxide, Diazepam*, Oxazepam, Chlorazepate, Lorazepam, Alprazolam, Zolpidem (1hr)
Barbiturtes: SAR of barbiturates, Barbital*, Phenobarbital, Mephobarbital, Amobarbital, Butabarbital, Pentobarbital, Secobarbital (1hr)
Miscellaneous: (1hr)
Amides & imides: Glutethimide
Alcohol & their carbamate derivatives: Meprobomate.
Aldehyde & their derivatives: Paraldehyde

B. Antipsychotics
Phenothiazines: SAR of Phenothiazines - Promazine hydrochloride, Chlorpromazine hydrochloride*, Triflupromazine, Thoridazine hydrochloride Piperacetazine hydrochloride, Prochlorperazine maleate, Trifluoperazine hydrochloride. (2hrs)
Ring Analogues of Phenothiazines: Chlorprothixene, Thiothixene, Loxapine succinate, Clozapine (1hr)

C. Anticonvulsants: SAR of Anticonvulsants, mechanism of anticonvulsant action
Barbiturates: Phenobarbitone, Methabarbital.
Hydantoins: Phenytoin*, Mephenytoin, Ethotoin (1hr)
Oxazolidine diones: Trimethadione(1hr)
Succinimides: Ethosuximide*
Urea and monoacylureas: Carbamazepine* (1hr)
Benzo diazepines: Clonazepam
Miscellaneous: Primidone, Valproic acid , Gabapentin, Felbamate (1hr)
UNIT V

Drugs acting on Central Nervous System

Narcotic and non-narcotic analgesics

Morphine and related drugs: SAR of Morphine analogues, Morphine sulphate, Codeine (1hr)
Meperidine hydrochloride, Anileridine hydrochloride, Diphenoxylate hydrochloride,
Loperamide hydrochloride, Fentanyl citrate*, Methadone hydrochloride*, Pentazocine,
Levorphanol tartarate. (2 hrs)
Narcotic antagonists: Nalorphine hydrochloride, Levallorphan tartarate, Naloxone
hydrochloride. (1hr)
Anti-inflammatory agents: Sodium salicylate, Aspirin, Mefenamic acid*, Indomethacin,
Sulindac (2hrs)
Zomepriac, Diclofenac, Ketorolac, Ibuprofen*, Naproxen, Piroxicam, Acetaminophen,
Phenylbutazone (2hrs)

TEXTBOOKS:

1. Williams D.A. Foye's Principles of Medicinal Chemistry, 8th edn, LPPWW Publishers

REFERENCE BOOKS:

1. Wilson and Gisvold’s Text book of Organic Medicinal and Pharmaceutical Chemistry, 12th edn,
 Lippincott Williams & Wilkins: New Delhi, 2011.
 Elsevier: Netherlands, 2017
3. Hansch.C. Comprehensive Medicinal Chemistry, Vol. 1-6, 1st edn, Re. Pergamon Press,

*Latest edition of the text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Pharmaceutics-II (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>IV</td>
<td>BP403T</td>
</tr>
<tr>
<td>Physical Pharmaceutics-II (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1</td>
<td>IV</td>
<td>BP408P</td>
</tr>
</tbody>
</table>

SCOPE: The course deals with the various physicochemical properties of drugs and excipients essential for formulation development. It focused on formulations like colloids and course dispersion and their stabilization. It includes flow properties, properties of small particles and reaction kinetics, which helps in pharmaceuticals' standardization and shelf life determination.

In the laboratory, students perform important experiments like viscosity, zeta potential and expiry date determination of pharmaceuticals. In the classroom students participate in group discussion, individual performance, and challenging tasks, which helps to potentiate students' collaborative behavior, personality growth and compassion.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, student shall be able to;

KNOWLEDGE
K1: Classify colloids.
K2: Explain different types of order of reactions.
K3: Discuss stabilization methods of colloidal and coarse dispersion.
K4: Classify the theory of emulsification.
K5: Criticize hydrolysis, oxidation and photolytic reactions on drug degradation.
K6: Differentiate different rheological behavior of fluids.

SKILL
S1: Implement the principles of chemical kinetics to stabilize medicinal agents and determination of expiry date of formulations.
S2: Measure the reaction rate constant and half-life of various order of reactions
S3: Demonstrate flow properties of powder/ granules.
S4: Comment on the zeta potential for the stability of the dispersed system.
S5: Estimate the optimum concentration of suspending agents.
S6: Assess the viscosity of fluids.
ATTITUDE
A1: Appreciate the work of others.
A2: Be sincere and punctual.
A3: Follow Good Laboratory Practice guidelines.
A4: Participate actively in the discussion during class.
A5: Support your team members for better outcomes.
A6: Share and care for good harmony and work culture.

UNIT I 6 Hours
Colloidal dispersions: Classification of dispersed systems & their general characteristics, size & shapes of colloidal particles,(1hr)
Classification of colloids, comparative account of their general properties(1hr)
Method of preparation (1hr).
Optical, kinetic(1hr)
Electrical properties. Effect of electrolytes(1hr),
Coacervation, peptization & protective action.(1hr)

UNIT II 6 Hours
Rheology: Newtonian systems, law of flow, kinematic viscosity, effect of temperature(1hr)
Non-Newtonian systems, pseudoplastic, dilatant, plastic,(1hr)
Thixotropy, thixotropy in formulation, (1hr)
Determination of viscosity capillary, falling Sphere, rotational viscometers (2 hrs)
Deformation of solids: Plastic and elastic deformation, Heckel equation, Stress, Strain, Elastic Modulus (1hr)

UNIT III 5 Hours
Coarse dispersion: Suspension, interfacial properties of suspended particles, settling in suspensions, (1hr)
Formulation of flocculated and deflocculated suspensions,(1hr)
Emulsions and theories of emulsification, (1hr)
Microemulsion and multiple emulsions, Stability problem and method to overcome,(1hr)
Preservation of emulsions, rheological properties of emulsions and emulsion formulation by HLB method. (1hr)

UNIT IV 6 Hours
Micromeretics: Particle size and distribution, mean particle size, number and weight distribution, particle number, (1hr)
Methods for determining particle size by different methods: nano size range DLS, laser scattering, (2 hrs)
Counting and separation method, particle shape, specific surface, methods for determining surface area, (1hr)
Permeability, adsorption, (1hr)
Derived properties of powders, porosity, packing arrangement, densities, bulkiness & flow properties(1hr)
UNIT V
7 Hours

Drug stability: Reaction kinetics: zero, pseudo-zero, first & second order, units of basic rate constants, (2hrs)

- Determination of reaction order. (1hr)
- Physical and chemical factors influencing the chemical degradation of pharmaceutical products: temperature, solvent, ionic strength, dielectric constant, specific & general acid-base catalysis (2hrs)
- Simple numerical problems. Stabilization of medicinal agents against common reactions like hydrolysis & oxidation. (1hr)

Accelerated stability testing in expiration dating of pharmaceutical dosage forms. Photolytic degradation and its prevention (1hr)

LIST OF EXPERIMENTS

1. Determination of particle size, and particle size distribution using Microscopic method.
2. Analyse the particle size and zeta potential by dynamic light scattering (DLS).
3. Calculate bulk density, true density and porosity.
4. Optimize the concentration of lubricant through the angle of repose method.
5. Estimate of viscosity of liquid using Ostwald's viscometer.
6. Compare the sedimentation volume of different suspending agent.
7. Optimize concentration of Single suspending agent.
8. Analyse the viscosity of semisolid by using Brookfield viscometer.
9. Calculate of reaction rate constant and half-life of the pseudo first-order reaction.
10. Estimate of reaction rate constant and half-life of a second-order reaction.
11. Establish the shelf life of pharmaceuticals by accelerated stability studies.

TEXT BOOKS:

REFERENCES BOOKS:

Latest edition of the text books & reference books can be referred
SCOPE: The course aims to comprehend the science behind drugs and how they interact with the human body. Knowledge of pharmacology can contribute to the development of new medications by studying the effects of drugs on cells, tissues, and organisms. It helps to explore potential therapeutic targets, design and synthesize new compounds, and assess their safety and efficacy. It provides knowledge of drug-receptor interactions, signal transduction pathways, and the impact of drugs on physiological processes to understand their mechanisms of action.

The course offers insights into how drugs are processed by the body, including factors such as bioavailability, drug clearance, and drug-drug interactions. It delivers the safety of medications, identifies potential side effects, and determines appropriate dosage regimens to minimize adverse reactions. Besides, it imparts a better understanding of drug response variability among individuals, pharmacogenetics, and drug interactions, and guides dose and drug selection. Additionally, it helps in pursuing careers in academia, conducting research to expand knowledge in pharmacology and teaching future scientists and healthcare professionals.

COURSE LEARNING OUTCOMES
Upon successful completion of the course, the student shall be able to;

KNOWLEDGE
K1: Describe the scientific terms and principles of pharmacology
K2: List the different classes of clinically relevant drugs used for various diseases/disorders affecting ANS and CNS
K3: Illustrate the mechanistic role of drugs in modifying neuro-transmission in ANS and CNS disorders
K4: Discuss the pharmacological actions of drugs at organ system/sub-cellular/macromolecular levels, pharmacokinetics, and dose of drugs used in the treatment of different diseases/disorders that affect ANS and CNS
K5: Predict the mechanism of drugs that contribute to adverse drug reactions and contraindications
K6: Explain the pharmacological and non-pharmacological management of disorders of ANS and CNS

SKILL
S1: Justify the relevance of drugs in the pharmacological management of various disorders
S2: Predict the drug interactions in a given prescription
S3: Recommend the possible alternatives to the drug therapy
S4: Identify the signs and symptoms of drug poisoning
S5: Convince the public about the need for drug therapy in a disorder/disease
S6: Educate patients about the do’s and don’ts in a drug therapy

ATTITUDE
A1: Appreciate the knowledge of Pharmacology for learning pharmacotherapy and toxicology.
A2: Communicate with peers and others.
A3: Support and collaborate with others.
A4: Exhibit professionalism in the working environment.
A5: Participate in healthcare initiatives.
A6: Embrace the new advancements in the healthcare system.

COURSE CONTENTS:
UNIT I 7 Hours
General Pharmacology
a. Introduction to Pharmacology
Definition and scope of pharmacology (1hr)
Nature and source of drugs, routes of drug administration (1hr)
Agonists, antagonists (competitive and non-competitive), partial agonists and inverse agonists (1hr)
b. Pharmacokinetics
Absorption of drugs (1hr)
Distribution of drugs (1hr)
Metabolism of drugs (1hr)
Excretion of drugs, Kinetics of Elimination (1hr)

UNIT II 9 Hours
General Pharmacology
Pharmacodynamics
Principles and mechanisms of drug action. (1hr)
Classification of receptors, regulation of receptors, drug receptors interactions signal transduction mechanisms (1hr)
G-protein–coupled receptors, ion channel receptors (1hr)
transmembrane enzyme-linked receptors, transmembrane JAK-STAT binding receptors and receptors that regulate transcription factors (1hr)
Spare receptors, dose–response relationship, therapeutic index (1hr)
Adverse drug reactions (1hr)
Drug interactions (pharmacokinetic and pharmacodynamic) and factors modifying drug action (1hr)
Enzyme induction, enzyme inhibition, Drug addiction, tolerance, dependence, drug abuse, tachyphylaxis, idiosyncrasy and allergy (1hr)
Drug discovery and clinical evaluation of new drugs -Drug discovery phase, preclinical evaluation phase, clinical trial phase, phases of clinical trials and pharmacovigilance. (1hr)
UNIT III 9 Hours

Pharmacology of drugs acting on the ANS
Neurohumoral transmission, co-transmission and receptors involved in the neurotransmission (1hr)
Drugs acting on ANS
Adrenergics (2hrs)
Anti-Adrenergics (1hr)
Cholinergics (1hr)
Anticholinergics (1hr)
Neuromuscular blocking agents and skeletal muscle relaxants (1hr)
Local anaesthetic agents (1hr)
Drugs used in myasthenia gravis and glaucoma (1hr)

UNIT IV 9 Hours

Pharmacology of drugs acting on the central nervous system
Receptor-mediated actions of neurotransmitters like GABA, Glutamate, Glycine, serotonin, and dopamine (2 hrs)
Alcohol and disulfiram (1hr)
General anaesthetics: Stages of anaesthesia, General anaesthetics drug pharmacology, Pre-Anaesthetic medications (1hr)
Sedatives and hypnotics (1hr)
Anti-epileptics (2hrs)
eDrugs used in Parkinson’s disease and Alzheimer’s disease (2hrs)

UNIT V 7 Hours

Pharmacology of drugs acting on the central nervous system
Psychopharmacological agents:
Antipsychotics (1hr)
Antidepressants (1hr)
Anti-anxiety agents (1hr)
Anti-maniacs and Hallucinogens. (1hr)
CNS stimulants and nootropics (1hr)
Endogenous opioid peptides and their receptors, Opioid analgesics and antagonists (2hrs)

UNIT VI 3 Hours

SIMULATED Experiments in pharmacology
Demonstrate the effect of drugs acting on ciliary motility of frog oesophagus and rabbit’s eye (1 hr)
Demonstrate the effects of skeletal muscle relaxants, anxiolytics, anticonvulsants, CNS stimulants and CNS depressants in various animal models(1 hr)
Discuss novel drugs approved by FDA/CDSCO and banned drugs acting on ANS and CNS (1hr)
TEXT BOOKS:
2. Tripathi KD. Essentials of medical pharmacology. 8th edn. Jaypee: Delhi; 2018

REFERENCE BOOKS:

Latest edition of the text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy And Phytochemistry II (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>IV</td>
<td>BP405T</td>
</tr>
<tr>
<td>Pharmacognosy And Phytochemistry II (P)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>30</td>
<td>1.5</td>
<td>IV</td>
<td>BP409P</td>
</tr>
</tbody>
</table>

SCOPE: The course provides a comprehensive understanding of biosource, chemistry and therapeutic uses of the phytochemicals and their isolation, identification and analysis techniques. It imparts the knowledge about the biosynthetic pathways in higher plants.

The course deals with the industrial production, estimation and utilization of some therapeutically important phytoconstituents. Also, the course helps to get a better insight into various aspects such as extraction, isolation, analysis and identification of phytoconstituents. It enables students to apply modern methods for extraction of the herbal drugs (such as ultrasound and microwave-assisted extraction), isolation of volatile oils and use of various analytical techniques for the identification of phytoconstituents.

COURSE LEARNING OUTCOMES

Upon completion of the course, the student shall be able to;

KNOWLEDGE
K1: Describe the metabolic pathways in higher plants.
K2: Discuss the utilization of radioactive isotopes in the investigation of biosynthetic pathways.
K3: Explain source, chemistry, therapeutic uses of various secondary metabolites containing drugs.
K4: Describe methods for industrial production, estimation and utilization of some therapeutically important phytoconstituents.
K5: Apply modern methods for extraction of the herbal drugs.
K6: Compare the process of isolation and identification of therapeutically important phytoconstituents.

SKILL
S1: Evaluate the crude drugs by microscopic and morphological methods
S2: Choose different extraction techniques to carry out isolation of phytoconstituents.
S3: Apply the analytical techniques for the identification of phytoconstituents.
S4: Identify unorganized drugs by qualitative chemical tests.
S5: Demonstrate the method for isolation of volatile oils.
S6: Identify different crude drugs based on their organoleptic characters.
ATTITUDE
A1: Develop a compassionate and supportive attitude.
A2: Adopt a habit of introspection to enhance personal growth.
A3: Cultivate a sense of social responsibility.
A4: Adapt to changing circumstances with a positive attitude.
A5: Develop a growth mindset, embracing challenges.
A6: Collaborate and co-operate with fellow students and others.

COURSE CONTENTS

UNIT I 7 Hours
Metabolic pathways in higher plants and their determination
Brief study of basic metabolic pathways:
Shikimic acid pathway (1 hr)
Acetate pathways (1 hr)
Amino acid pathways (1 hr)
Formation of different secondary metabolites (tropane alkaloids, cardiac glycosides, anthraquinones) through these pathways (2 hrs)
Study of utilization of radioactive isotopes in the investigation of Biogenetic studies (2 hrs)

UNIT II 8 Hours
Definition, classification, properties and test for identification of Alkaloids, Glycosides, Flavonoids, Tannins, Volatile oil and Resins. (3 hrs)
Biosources, chemistry & chemical classes, therapeutic uses and commercial applications of following secondary metabolites; Pharmacognostical Scheme of important drugs (Superscripted by *):
Alkaloids: Vinca, Rauwolfia, Belladonna, *Opium (1 hr)
Phenylpropanoids and Flavonoids: Lignans, Tea
Steroids, Cardiac Glycosides & Triterpenoids: Liquorice, Dioscorea, *Digitalis (1 hr)
Volatile oils: *Clove, *Cinnamon, *Fennel, Coriander. (1 hr)
Tannins: Catechu, Pterocarpus.
Resins: Guggul, Ginger, Benzoin, Colophony, Asafoetida (1 hr)
Glycosides: Senna, Aloes.
Iridoids, Other terpenoids & Naphthaquinones: Artemisia, taxus, carotenoids, Gentian (1 hr)

UNIT III 3 Hours
Isolation, Identification and Analysis of Phytoconstituents
Glycosides: Glycyrhetinic acid
Resins: Curcumin (1 hr)
Terpenoids: Citral, Menthol (1 hr)
Alkaloids: Quinine, Reserpine, Caffeine (1 hr)

UNIT IV 4 Hours
Industrial production, estimation and utilization of the following phytoconstituents:
Sennoside, Digoxin, Diosgenin (1 hr)
Atropine, Vincristine and Vinblastine (1hr)
Forskolin, Artemisinin, Taxol Podophyllotoxin (2hrs)

UNIT V

Basics of Phytochemistry

Conventional methods: Maceration, Digestion, Decoction, Infusion, Percolation
Soxhlet Extraction. (1hr)

Modern techniques for extraction phytoconstituents: Counter current extraction, super critical fluid extraction, ultrasound-assisted, and microwave-assisted extractions. (2hrs)

Methods for isolation of volatile oil. (1hr)

Application of different chromatographic techniques and electrophoresis in the isolation, purification of phytoconstituents. (2hrs)

Application of Spectroscopic techniques [UV-Vis, Fluorescence, IR, NMR, MASS] for the identification of crude drugs. (2hrs)

LIST OF EXPERIMENTS:

1. Morphology, histology and powder characteristics & extraction & detection of:
 - Cinnamon, Senna, Clove, Ephedra, Fennel
2. Exercise involving isolation & detection of active principles
 - a) Caffeine - from tea dust.
 - b) Ultrasound and microwave assisted extraction of diosgenin from Dioscorea
 - c) Microwave assisted extraction of curcuminoids from *Curcuma longa*
 - d) Glycyrrhetinic acid from Liquorice
3. Separation of sugars by Paper chromatography
4. TLC of phytoconstituents (Caffeine, Clove oil, Diosgenin, Curcumin)
5. Distillation of volatile oils and detection of phytoconstituents by TLC
6. Analysis of crude drugs by chemical tests:
 - (i) Asafoetida (ii) Benzoin (iii) Colophony (iv) Aloes (v) Myrrh
7. Spotting for identification of crude drugs mentioned in the theory.
8. General Test for identification of secondary metabolites (Alkaloids, Steroids, Flavonoids, Tannins)

TEXT BOOKS:

REFERENCE BOOKS:

ADDITIONAL READING MATERIALS:

Latest edition of the text books & reference books can be referred
SCOPE: Pharmaceutical jurisprudence is a specialised field that combines the principles of pharmacy and law. It focuses on the legal and regulatory aspects of the pharmaceutical industry, including the development, manufacturing, distribution, and use of drugs and healthcare products. This course is designed to impart basic knowledge on important legislation related to the pharmacy profession in India.

This course provides students with a comprehensive understanding of the legal and regulatory frameworks governing the pharmaceutical industry, including relevant legislation, regulations, and policies. It equips them with the knowledge and skills to navigate the complex legal landscape, address regulatory compliance issues, and contribute to the effective and ethical functioning of the pharmaceutical sector. All the Acts and Rules shall be discussed giving emphasis on the latest amendments.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Explain key pharmaceutical laws and regulations.
K2: Enumerate the importance of Pharmaceutical legislations and their implications in the development and marketing of pharmaceuticals
K3: Review various Indian Pharmaceutical Acts and Laws
K4: Describe the regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals
K5: Adapt the code of ethics during the pharmaceutical practice
K6: Relate the various concepts of Drug policy, DPCO, Patent and Designing act

SKILL

S1: Predict specific drug approval processes and regulatory bodies.
S2: Interpret legal language and terminology used in drug laws and regulations.
S3: Summarise ethical guidelines and principles relevant to the pharmaceutical sector
S4: Assess the role of regulatory agencies in ensuring drug safety and efficacy.
S5: Adapt knowledge of pharmaceutical laws to assess compliance issues in the industry
S6: Analyze pharmaceutical laws and regulations and their implications for various stakeholders.
ATTITUDE

A1: Identify the societal impact of pharmaceutical practices and the need for responsible engagement.
A2: Express a receptive attitude towards learning about the impact of laws and regulations on the pharmaceutical industry.
A3: Apply legal principles to analyse and resolve ethical dilemmas in the pharmacy profession.
A4: Develop an attitude of adherence to laws, regulations and standards governing the pharmaceutical industry.
A5: Cultivate a professional attitude towards their role as Pharmacist demonstrating accountability responsibility and confidentiality.
A6: Embrace the value of lifelong learning and staying updated with legal and ethical developments in the field.

COURSE CONTENTS

UNIT I 3 Hours
Pharmaceutical Legislations – A brief review, Introduction, Study of drugs enquiry committee, Health survey and development committee, Hathi committee and Mudaliar committee (2 hrs)
Code of Pharmaceutical Ethics Definition, Pharmacist in relation to his job, trade, medical profession and his profession, Pharmacist’s oath (1 hr)

UNIT II 10 Hours
Drugs and Cosmetics Act, 1940 and its rules 1945.
Objectives, Definitions, Legal definitions of schedules to the Act and Rules
Import of drugs – Classes of drugs and cosmetics prohibited from import, Import under license or permit. Offences and penalties. (2 hrs)
Manufacture of drugs – Prohibition of manufacture and sale of certain drugs, Conditions for grant of license and conditions of license for manufacture of drugs, manufacture of drugs for test, examination and analysis, manufacture of new drug, loan license and repacking license.(2 hrs)
Sale of Drugs – Wholesale, Retail sale and Restricted license. Offences and penalties
Labeling & Packing of drugs- General labeling requirements and specimen labels for drugs and cosmetics, List of permitted colors. Offences and penalties) (2 hrs)
Administration of the Act and Rules – Drugs Technical Advisory Board, Central drugs Laboratory, Drugs Consultative Committee, Government drug analysts, Licensing authorities, controlling authorities, Drugs Inspectors. (2 hrs)
UNIT III 8 Hours

Pharmacy Act – 1948
Objectives, Definitions, Pharmacy Council of India; its constitution and functions, Education Regulations, State and Joint state pharmacy councils; constitution and functions, Registration of Pharmacists, Offences and Penalties (3 hr)

Medicinal and Toilet Preparation Act – 1955 (2 hr)

Narcotic Drugs and Psychotropic Substances Act-1985 and Rules (3 hrs)
Objectives, Definitions, Authorities and Officers, Constitution and Functions of narcotic & Psychotropic Consultative Committee, National Fund for Controlling the Drug Abuse, Prohibition, Control and Regulation, opium poppy cultivation and production of poppy straw, manufacture, sale and export of opium, Offences and penalties

UNIT IV 6 Hours

Study of Salient Features of Drugs and Magic Remedies Act and its rules (2 hrs)
Objectives, Definitions, Prohibition of certain advertisements, Classes of Exempted advertisements, Offences and Penalties

Prevention of Cruelty to animals Act-1960 (2 hrs)
Objectives, Definitions, Institutional Animal Ethics Committee, CPCSEA guidelines for Breeding and Stocking of Animals, Performance of Experiments, Transfer and acquisition of animals for experiment, Records, Power to suspend or revoke registration, Offences and Penalties

National Pharmaceutical Pricing Authority
Drugs Price Control Order (DPCO)- 2013. Objectives, Definitions, Sale prices of bulk drugs, Retail price of formulations, Retail price and ceiling price of scheduled formulations, National List of Essential Medicines (NLEM) (2 hrs)

UNIT V 3 Hours

Medical Termination of Pregnancy Act: Termination of Pregnancies, Offences & Penalties, Rules & Regulations (1 hr)

Right to Information Act: Historical Background, Objectives, Features of the Act and its importance. Request for obtaining information, Exemptions. Designation of Public Information Officers; Constitution of Central and State Information Commissions; their Powers and Functions. Appeal and Penalties. (1 hr)

Introduction to Intellectual Property Rights (IPR): Different forms of IPR and their protection (1 hr)

TEXTBOOKS:

REFERENCE BOOKS:
1. Drugs and Cosmetics Act/Rules by Govt. of India publications.
2. Medicinal and Toilet preparations act 1955 by Govt. of India publications.
3. Narcotic drugs and psychotropic substances act by Govt. of India publications
4. Drugs and Magic Remedies act by Govt. of India publication

*Latest edition of the text books & reference books can be referred
SCOPE: The course is designed to impart students to the depths and richness of Ramayana and its knowledge traditions. To equip students with practical knowledge learned from Ramayana and its characters for success in day-to-day life. The first chapter Balakanda deals with the origins and childhood of Rama. Sita’s birth, betrothal, and marriage to Rama. The second chapter, Ayodhya Kanda, includes the preparations for Rama’s coronation in the city of Ayodhya, his exile into the forest, and the regency of Bharata. The third chapter Aranya Kanda contains the forest exile of Rama with Sita and Lakshmana. The kidnapping of Sita by the demon king Ravana. The fourth chapter Kishkindha Kanda deals with Rama and Hanuman in Kishkindha. Chapter five Sundara Kanda contains a detailed account of Hanuman’s adventures, including his meeting with Sita. The sixth chapter Yudha Kanda includes the battle in Lanka between Rama and Ravana. Sita’s fire ordeal. Rama’s return to Ayodhya to reign over the ideal state. The seventh chapter Uthara Kanda includes Sita’s banishment. Lava and Kusha. Rama’s dharma was fulfilled.

This epic also depicts vision and bringing different people together for a collective goal are unique qualities of a genuine leader like Rama and examples from Ramayana that are a source of motivation for leadership too.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE
K1: Discuss general concepts of Great Itihasa (Understanding)
K2: Describe the characteristics of the classical Indian epic, with special reference to the Ramayana. (Understanding)
K3: Explain the stories of Balakanda, Ayodhya kanda, Aranya kanda and Kishkindha kanda
K4: Discuss the stories of Sundara kanda and Yudha kanda (Understanding)
K5: Describe the relevance of Ramayana and its learning aspects in modern life (Understanding)
K6: Explain the authenticity of Uttar Kanda and its attempt to explain the untold stories in the first six Kanda (Understanding)

SKILL
S1: Incorporate various strategic lessons mentioned in Ramayana for modern life.
S2: Apply the principles of life skill ideas discussed in Ramayana for materialistic life
S3: Design what Ramayana is and what it is not, its contemporary relevance, and how it becomes part of Indians’ day-to-day life

S4: Analyse inspirational female characters and regional tales from Ramayana to gain a coherent understanding of it Indian values and culture.

S5: Appreciate and incorporate principles of Ramayana in everyday life.

S6: Interpret and incorporate an overall idea of its contents, the multifarious lessons and possibilities of Ramayana.

ATTITUDE

A1: Embrace the life principle of taking control of our thoughts

A2: Appreciate female characters, regional tales, traditions, and the spirit of harmonious living.

A3: Appreciate the principle of brotherhood and regular personal development in day-to-day life

A4: Follow a good attitude of compassion and love for others and practice mindfulness

A5: Appreciate life’s purpose and live in alignment with our purpose

A6: Develop qualities of discipline, honesty, loyalty, and love.

COURSE CONTENTS

UNIT I - Introduction to the Great Itihasa (1hr)

UNIT II - Bala-Kāṇḍa: (Preparing for the renowned mission.(1hr)

And Ayodhya-Kāṇḍa: (Harbinger of an Entire Tradition of Nobleness.) (1hr)

UNIT III - Araṇya-Kāṇḍa: (Tale of the forest life) (1hr)

And Kishkindha-Kāṇḍa: (The Empire of Holy Monkeys.) (2 hrs)

UNIT IV - Sundara-Kāṇḍa: (Heart of the Ramayana) (1hr)

And Yuddha-Kāṇḍa: (The most popular part of the Ramayana) (1hr)

UNIT V - Ramayana and Modern-day learning (2 hrs)

UNIT VI - Ecological Awareness in the Ramayana (2hrs)

UNIT VII - Different Ramayana: (Epic that connects the world) (1hr)

UNIT VII - Uttara-Kāṇḍa: (An attempt to explain the untold stories) (2hr)

TEXTBOOKS:

REFERENCE BOOK

Latest edition of the text books & reference books can be referred
SEMESTER-V
SCOPES: Medicinal Chemistry II applies the principles and techniques of chemistry to identify, design, and optimize compounds that can be used as drugs for the treatment of various diseases. The course emphasizes on structure-activity relationships of drugs, and the chemical synthesis of important drugs in each class.
This course’s importance lies in the process of design and development which results in the formation of new synthetic drug compounds. It also works towards improving the whole system that is used to develop the pharmaceuticals. It aims at making new discoveries in drugs and medicines to treat various ailments. Overall, the course Medicinal chemistry-II makes the students understand the basics of drug discovery. The course Medicinal Chemistry II equips students with the necessary knowledge and skills to contribute effectively to the pharmaceutical industry and adhere to regulatory standards.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to

KNOWLEDGE

K1: Classify medicinal compounds according to their chemical structure
K2: Sketch the synthesis of therapeutic useful drug molecules using available synthetic pathways.
K3: Illustrate the structure-activity relationship of some important drug classes with respect to their biological activity
K4: Relate the chemical structure of drugs with the physicochemical properties
K5: Correlate the mechanism of action and therapeutic value of drugs
K6: Apply principles of organic chemistry for the synthesis/analysis of medicinally important compounds or intermediates required for the synthesis of drugs and their purification

SKILL

S1: Demonstrate the synthetic pathway of new therapeutic agents
S2: Analyse the effects of various functional groups in the therapeutic activity of drugs
S3: Determine the drug targets and their therapeutic potential with respect to drug development
S4 Illustrate the structures and reactions using drug design software
S5: Apply theoretical knowledge to modify the structure-activity relationship of different classes of drugs
S6: Identify basic laboratory skills and techniques required for the synthesis and purity of medicinal compounds

ATTITUDE
A1: Demonstrate a commitment to continuous learning and staying updated with advancements in the field of medicinal chemistry
A2: Motivate your fellow beings to be good team players
A3: Participate in group discussions to plan effectively
A4: Follow a professional and ethical approach
A5: Exhibit good communication skills to emerge as compassionate pharmacy professionals.
A6: Appreciate self-motivation and the ability to engage in self-directed learning.

COURSE CONTENTS
Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure-activity relationship of the selective class of drugs as specified in the course, and synthesis of drugs superscripted by (*)

UNIT I 5 Hours
Antihistaminic agents
Histamine, receptors and their distribution in the human body
H1–antagonists: Aminoalkyl ethers: Diphenhydramine hydrochloride*, Dimenhydrinate, Doxylamine succinate, Diphenylpyraline hydrochloride Clemastine fumarate
Ethylene diamines: Piperazine derivatives: Chlorcyclizine hydrochloride, Meclizine hydrochloride (1 hr)
Propylamine derivatives: Chlorpheniramine maleate, Triprolidine hydrochloride*, Phenindamine tartrate (1 hr)
Phenothiazine derivatives: Promethazine hydrochloride*, Trimeprazine tartrate
Cyproheptadine hydrochloride, Dibenzocycloheptenes: Azatidine maleate (1 hr)
Second-generation antihistamines: Loratadine, Cetirizine, Levocetirizine, Bilastine, Mast cell stabilizers: Cromolyn sodium (1 hr)
UNIT II 4 Hours

Anti-neoplastic agents
Alkylating agents: Mechlorethamine, Cyclophosphamide,
Melphalan, Chlorambucil, Busulfan, Thiotepa, Carmustine, Lomustine (1 hr)
Antimetabolites: Mercaptopurine, Thioguanine, Fluorouracil,
Flouxuridine, Cytarabine, Methotrexate, Azathioprine (1 hr)
Antibiotics: Dactinomycin, Daunorubicin, Doxorubicin, Bleomycin (1 hr)
Plant products: Vincristine sulfate, Vinblastin sulfate, Etoposide
Miscellaneous: Cisplatin, Mitotane, Hydroxyurea,(1 hr)

UNIT III
Cardiovascular drugs 10 Hours
Anti-anginal drugs: Vasodilators: Amyl nitrite, Nitroglycerin*, Pentaerythritol tetranitrate,
Isosorbide dinitrite*, Dipyridamole, (1 hr)
Calcium channel blockers: Verapamil, Bepridil hydrochloride, Diltiazem hydrochloride,
Nifedipine, Amlodipine, Felodipine, Nicardipine, Nimodipine. (1 hr)
Diuretics: Carbonic anhydrase inhibitors: Acetazolamide, Methazolamide, Dichlorphenamidem
Thiazides: Chlorthiazide, Hydrochlorothiazide, Hydroflumethiazide, Cyclothiazide
Loop diuretics: Furosemide*, Bumetanide, Ethacrynic acid.
Potassium-sparing diuretics: Spironolactone, Triamterene, Amiloride.
Osmotic Diuretics: Mannitol (2 hrs)
Anti-hypertensive Agents: Timolol, Captopril
Lisinopril, Enalapril, Benazepril hydrochloride, Quinapril hydrochloride
Methyldopate hydrochloride*, Clonidine hydrochloride, Guanethidine mono sulfate, Guanabenz acetate,
Sodium nitroprusside, Diazoxide, Minoxidil, Reserpine, Hydralazine hydrochloride (2 hrs)
Antiarrhythmic Drugs: Quinidine sulfate, Procainamide hydrochloride, Disopyramide phosphate*, Phenytin sodium, Lidocaine hydrochloride, Tocainide hydrochloride,
Mexiletine hydrochloride, Lorcaainide hydrochloride, Amiodarone, Sotalol (1 hr)
Anti-hyperlipidemic agents: Clofibrate, Lovastatin, Cholestyramine, and Colestipol.(1hr)
Coagulants & Anticoagulants: Vit K, Menadione, Acetomenadione, Warfarin*, Dicoumarol,
Anisindione, Clopidogrel (1hr)

Drugs used in Congestive Heart Failure: Digoxin, Digitoxin, Nesiritide

Miscellaneous Drugs: Bosentan, Tezosentan (1 hr)

UNIT IV 7 Hours

Drugs acting on the Endocrine system

Nomenclature, Stereochemistry, and Metabolism of Steroids (1 hr)

Sex hormones: Testosterone, Nandralone, Progestrones, Oestriol, Oestradiol, Oestrione, Diethyl stilbestrol

Drugs for erectile dysfunction: Sildenafil, Tadalafil (1 hr)

Oral contraceptives: Mifepristone, Norgestrel, Levonorgestrel (1 hr)

Corticosteroids: Cortisone, Hydrocortisone, Prednisolone, Betamethasone, Dexamethasone (1 hr)

Thyroid, and anti-thyroid drugs: L-Thyroxine, L-Thyronine, Propylthiouracil, Methimazole, Carbimazole (1 hr)

Antidiabetic agents:

Insulin and its preparations

Sulfonyl ureas: Tolbutamide*, Chlorpropamide, Glipizide, Glimepiride.

Biguanides: Metformin, Phenformin

Thiazolidinediones: Pioglitazone

Meglitinides: Repaglinide, Nateglinide.

α-Glucosidase inhibitors: Acarbose, Voglibose. (2 hrs)

UNIT V 4 Hours

General Anaesthetics

Inhalation anesthetics: Halothane*, Methoxyflurane, Enflurane, Sevoflurane, Isoflurane, Desflurane.

Dissociative anesthetics: Ketamine hydrochloride*

Ultra short-acting barbiturates: Methohexital sodium*, Thiamylal sodium, Thiopental sodium. (2 hrs)

Local Anaesthetics:

SAR of local anesthetics

Benzoic Acid derivatives; Cocaine, Hexylcaine, Piperocaine, Meprylcaine, Cyclomethicaine

Amino Benzoic acid derivatives: Benzocaine*, Butamben, Procaine* Butacaine, Tetracaine, Propoxycaine, Benoxinate(1hr)

Lidocaine/Anilide derivatives: Lignocaine, Mepivacaine, Prilocaine, Etidocaine
Miscellaneous: Phenacaine, Diperodone, Dibucaine. (1hr)

TEXTBOOKS:

REFERENCE BOOKS:

Latest edition of the text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Biotechnology (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>V</td>
<td>BP502T</td>
</tr>
</tbody>
</table>

SCOPE: Pharmaceutical biotechnology encompasses a wide scope that combines knowledge and techniques from various disciplines. It involves the study and application of immunology, recombinant DNA technology, monoclonal antibodies (Mab), formulation of protein drugs, fermentation process, enzyme immobilization, and molecular biology techniques.

Immunology plays a crucial role in understanding the immune system and enables the development of immunotherapeutic approaches and the design of vaccines to prevent and treat diseases. Recombinant DNA technology allows for the manipulation and modification of genetic material to produce desired proteins or therapeutic agents. It facilitates the production of recombinant proteins, which has revolutionized the field of diagnostics and targeted therapeutics. Molecular biology techniques play a vital role in pharmaceutical biotechnology. Formulation of protein drugs focuses on developing efficient and stable formulations of these therapeutic proteins. Fermentation processes are utilized for large-scale production of pharmaceuticals. Enzyme immobilization techniques provide a means to enhance the stability and reusability of enzymes used in pharmaceutical processes and for various applications like biosensors.

This course will develop an attitude of critical thinking and problem-solving among students. Students will exhibit a proactive approach to learning and staying updated with the latest advancements in the field. Overall, the scope of pharmaceutical biotechnology contributes to the potential to improve healthcare outcomes and address unmet medical needs.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course the student shall be able to

KNOWLEDGE:

K1: Acquire comprehensive knowledge about the fundamental concepts, principles, and terminology related to biotechnology.

K2: Explain the principles and techniques involved in the production and characterization of monoclonal antibodies (Mabs) and their role in diagnostics and therapeutics.

K3: Describe the formulation and development of protein drugs, including the different strategies for enhancing their stability, bioavailability, and targeted delivery.

K4: Develop a strong understanding of fermentation processes and their significance in the production of pharmaceuticals, including the optimization of growth conditions and scale-up strategies.
K5: Explain the principles and applications of enzyme immobilization techniques in pharmaceutical biotechnology, including the design of Biosensors.

K6: Acquire knowledge of various molecular biology techniques used in pharmaceutical biotechnology, such as DNA cloning, PCR, Blotting techniques and ELISA.

K7: Explain the function of the immune system, including the different components including different types of vaccines and their role in preventing infectious diseases.

SKILL:

S1: Develop the ability to critically evaluate the principles and applications of recombinant DNA technology.

S2: Apply the theoretical principles of immunology in the development of immunotherapeutics and diagnostics.

S3: Identify issues in the formulation and development of protein drugs in terms of stability and efficacy.

S4: Apply the principles of fermentation processes in the production of pharmaceuticals, including the optimization of growth conditions.

S5: Demonstrate an understanding of enzyme immobilization techniques and their applications in pharmaceutical biotechnology.

S6: Critically analyze various molecular biology techniques used in pharmaceutical biotechnology.

ATTITUDE

A1: Develop an attitude of critical thinking and problem-solving

A2: Exhibit self-motivation, curiosity, and a proactive approach to learning and staying updated with the latest advancements.

A3: Demonstrate professional behavior, including punctuality, respect for others, effective time management, and adherence to professional standards and guidelines.

A4: Develop an attitude of adaptability and willingness to learn new techniques and technologies in the rapidly evolving field of pharmaceutical biotechnology.

A5: Cultivate an attitude of continuous improvement by staying updated.

A6: Display openness to new ideas, alternative viewpoints, and adaptability to change.
 COURSE CONTENT:

UNIT I 5 Hours
Brief introduction to Biotechnology with reference to Pharmaceutical Sciences. (1h.)
Enzyme Biotechnology- Methods of enzyme immobilization and applications. (3hrs.)
Biosensors- Working and applications of biosensors in Pharmaceutical Industries. (1h.)

UNIT II 8 Hours
Basic principles of genetic engineering. (1h.)
Study of cloning vectors, restriction endonucleases and DNA ligase. (2 hrs.)
Recombinant DNA technology. Application of genetic engineering in medicine. (1h.)
Application of r DNA technology and genetic engineering in the production of: i) Interferon ii) Vaccines- hepatitis- B iii) Hormones-Insulin. (1h.)
Immuno blotting techniques- ELISA, Western blotting, Southern blotting. (2hrs.)
Brief introduction to PCR
Mutation: Types of mutation/mutants. (1h.)

UNIT III 9 Hours
Types of immunity- humoral immunity, cellular immunity. a) Structure of Immunoglobulins (2hrs.)
Hypersensitivity reactions. (1h.)
General method of the preparation of bacterial vaccines, toxoids, viral vaccine, antitoxins, serum-immune blood derivatives and other products relative to immunity. (2hrs)
(Storage conditions and stability of official vaccines) (1h.)
Hybridoma technology- Production, Purification and Applications (1h.)
Blood Products: Collection, Processing and Storage of whole human blood, dried human plasma, plasma substitutes. (2hrs.)

UNIT IV 4 Hours
Fermentation methods and general requirements, study of media, equipments, sterilization methods, aeration process, stirring. (2hrs)
Large scale production fermenter design and its various controls. (1h.)
Study of the production of - Penicillin, citric acid, Vitamin B12, Glutamic acid. (1h.)
UNIT V

Points to consider in the process of formulating a therapeutic protein and how it differs from the formulation of small molecules. (2hrs)

Protein structure, protein stability and characterization. (1h.)

Formulation development, excipients used and freeze-drying of proteins. (1h.)

TEXT BOOKS:

REFERENCE BOOKS:

*Latest edition of the text books & reference books can be referred
SCOPE: The course aims to comprehend the science behind drugs and how they interact with the human body. Knowledge of pharmacology can contribute to the development of new medications by studying the effects of drugs on cells, tissues, and organisms. It helps to explore potential therapeutic targets, design and synthesize new compounds, and assess their safety and efficacy. It provides knowledge of drug-receptor interactions, signal transduction pathways, and the impact of drugs on physiological processes to understand their mechanisms of action.

The course offers insights into how drugs are processed by the body, including factors such as bioavailability, drug clearance, and drug-drug interactions. It delivers the safety of medications, identifies potential side effects, and determines appropriate dosage regimens to minimize adverse reactions. Besides, it imparts a better understanding of drug response variability among individuals, pharmacogenetics, and drug interactions, and guides dose and drug selection. Additionally, it helps in pursuing careers in academia, conducting research to expand knowledge in pharmacology, and teaching future scientists and healthcare professionals.

COURSE LEARNING OUTCOMES

Upon the successful completion of the course, the student shall be able to;

KNOWLEDGE
K1: List the different classes of clinically relevant drugs used for various diseases/disorders affecting cardiovascular, respiratory, renal, and endocrine systems
K2: Illustrate the mechanistic role of drugs used for various diseases/disorders affecting cardiovascular, respiratory, renal, and endocrine systems
K3: Discuss the pharmacological actions of drugs at organ system/sub-cellular/macromolecular levels, pharmacokinetics, and dose of drugs used in the treatment of various diseases/disorders
K4: Predict the mechanism of drugs that contributes to adverse drug reactions and contraindications
K5: Distinguish the effect of various drugs on receptors using isolated tissue preparations
K6: Correlate the knowledge in pharmacology with related medical sciences.

SKILL
S1: Justify the relevance of drugs in the pharmacological management of various disorders
S2: Predict the drug interactions in a given prescription
S3: Recommend the possible alternatives to the drug therapy
S4: Identify the signs and symptoms of drug poisoning
S5: Operate different lab equipment according to SOPs for preclinical experimentation.
S6: Perform skilfully various bioassay experiments in different tissues

ATTITUDE
A1: Appreciate the knowledge of Pharmacology for learning pharmacotherapy and toxicology.
A2: Communicate with everyone effectively.
A3: Support and collaborate with others.
A4: Exhibit professionalism in the work environment.
A5: Participate actively in healthcare initiatives.
A6: Embrace the new advancements in the healthcare system.

COURSE CONTENTS
UNIT I 7 Hours
Pharmacology of drugs acting on the CVS
Diuretics & Anti-diuretics (2hrs)
Drugs used in congestive heart failure (1hr)
Anti-hypertensives (1hr)
Anti-anginals (1hr)
Anti-arrhythmic drugs (2hr)
Hypolipidemics (1hr)

UNIT II 5 Hours
Pharmacology of drugs acting on the blood system
Drug used in the therapy of shock (1hr)
Hematinics, coagulants, and anticoagulants (2hrs)
Fibrinolytics and anti-platelet drugs (1hr)
Plasma volume expanders (1hr)

UNIT III 5 Hours
Autacoids and related drugs
Antihistamines, 5-HT antagonists (2hrs)
Non-steroidal anti-inflammatory agents (1hr)
Anti-gout drugs (1hr)
Anti-rheumatic drugs emphasis on DMARDs (1hr)

UNIT IV 7 Hours
Pharmacology of drugs acting on the endocrine system
Anterior Pituitary hormones analogues and their antagonists (1hr)
Thyroid hormones analogues and their antagonists (1hr)
Parathormone, Calcitonin and Vitamin D (1hr)
Insulin, Oral hypoglycaemic (2hrs)
Corticotropin, Corticosteroids (1hr)

UNIT IV 6 Hours
Pharmacology of drugs acting on the endocrine system
Androgens (1hr)
Anabolic steroids (1hr)
Estrogens and progesterone (2hrs)
Oral contraceptives and Tocolytics (1hr)
Discuss novel drugs approved by FDA/CDSCO and novel drug targets for treating various
diseases/disorders (1hr)

LIST OF EXPERIMENTS:

1. Introduction to in-vitro pharmacology and physiological salt solutions.
2. Demonstrate the effect of drugs on the blood pressure and heart rate of the dog.
3. Demonstrate the effect of diuretics in rats/mice
4. Demonstrate DRC of acetylcholine using chicken ileum
5. Demonstrate the anti-ulcer activity of a drug using the pylorus ligand (SHAY) rat model and NSAIDS-induced ulcer model.
6. Demonstrate test for pyrogens in rabbit
7. Evaluate the effect of atropine on the DRC of acetylcholine using chicken ileum
8. Evaluate the effect of neostigmine on the DRC of acetylcholine using chicken ileum
9. Determine the unknown concentration of acetylcholine by the matching bioassay method using chicken ileum.
10. Determine the unknown concentration of acetylcholine by the interpolation bioassay method using chicken ileum.
11. Estimation of liver function test using the semi-auto analyser
12. Estimation of kidney function test using the semi-auto analyser
13. Estimation of blood urea nitrogen using the semi-auto analyser
14. Estimation of total protein using the semi-auto analyser
15. Estimation of various lipid profiles using the semi-auto analyser

TEXTBOOKS

REFERENCE BOOKS

4. Satoskar RS, Bhandarkar SD, Nirmala N. Pharmacology and Pharmacotherapeutics. 26th edn. Popular Prakashan; 2020

*Latest edition of the text books & reference books can be referred
SCOPE: This course gives the basic understanding of the raw material and excipient used in herbal drug industry, and the guidelines for the quality control of herbal drugs. The course includes an overview of the regulatory framework and guidelines governing the manufacture, and marketing of herbal drugs. Students gain insights into national and international regulations related to herbal drug products. The course also emphasizes on good manufacturing practices (GMP), patenting of Ayurveda, Siddha, Unani drugs.

Furthermore, it explores the scope, regulatory aspects and potential of nutraceuticals in promoting health and preventing diseases. The scope extends to understanding the general concept of interactions between herbal drugs and conventional drugs, as well as interactions between herbs and food. Herbal Drug Technology encompasses knowledge and skills that enable students to make contributions to the herbal industry. Students should demonstrate the ability of responsible decision-making.

COURSE LEARNING OUTCOMES:
Upon successful completion of the course, a student shall be able to;

KNOWLEDGE
K1: Summarize the herbal raw material as source of herbal drugs.
K2: Describe the WHO guidelines for evaluation of herbal drugs
K3: Discuss good manufacturing practice of Indian Systems of Medicine.
K4: Explain the patenting and regulatory requirements of herbal products.
K5: Analyze the possible side effects and interactions of herbal drugs.
K6: Analyze the case study of curcuma and Neem.
K7: Compare the basic principles of Indian systems of medicines.
SKILL

S1: Identify the phytoconstituents present in the crude drugs.
S2: Analyze the crude drug for the content of active phytoconstituents.
S3: Evaluate the prepared herbal and Ayurvedic formulation as per Pharmacopoeial requirements.
S4: Demonstrate the preparation of herbal formulations.
S5: Analyze the purity of the sample by comparing with standard values.
S6: Prepare and evaluate herbal cream.

ATTITUDE

A2: Accept the diverse perspectives, ideas, and cultures.
A3: Demonstrate the ability of responsible decision-making.
A4: Engage in initiatives that promote positive social changes.
A5: Foster an open-minded attitude.
A6: Complete the tasks on time individually or in a team.

COURSE CONTENTS

UNIT I 8 Hours

Herbs as raw materials
Definition of herb, herbal medicine, herbal medicinal product, herbal drug preparation,
Source of Herbs (1 hr)
Selection, identification and authentication of herbal materials
Processing of herbal raw material(2 hrs)

Indian Systems of Medicine
a) Basic principles involved in Ayurveda, Siddha, Unani and Homeopathy (2 hrs)
b) Preparation and standardization of Ayurvedic formulations viz Aristas and Asawas, Ghutika, Churna, Lehya and Bhasma, (1 hr)

Biodynamic Agriculture
Good agricultural practices in cultivation of medicinal plants including Organic farming (1 hr)
Pest and Pest management in medicinal plants: Biopesticides/Bioinsecticides (1 hr)
UNIT II 7 Hours

Nutraceuticals
General aspects, Market, growth, scope and types of products available in the market. (1 hr)
Healthbenefits and role of Nutraceuticals in ailments like Diabetes, CVS diseases, Cancer, Irritable bowel syndrome and various Gastro intestinal diseases.(2 hrs)
Study of following herbs as health food: Alfaalfa, Chicory, Ginger, Fenugreek, Garlic, Honey, Amla, Ginseng, Ashwagandha, Spirulina (2 hrs)

Herbal-Drug and Herb-Food Interactions: General introduction to interaction and classification. Study of following drugs and their possible side effects and interactions:
Hypercium, kava-kava, Ginkobiloba, Ginseng, Garlic, Pepper &Ephedra.(2 hrs)

UNIT III 6 Hours

Herbal Cosmetics
Sources and description of raw materials of herbal origin used via, fixed oils, waxes, gums colours, perfumes, protective agents, bleaching agents, antioxidants in products such as skin care, hair care and oral hygiene products.(3hrs)
Herbal Excipients – Significance of substances of natural origin as excipients – colorants, sweeteners, binders, diluents, viscosity builders, disintegrants, flavors &perfumes.(2 hrs)

Herbal formulations:
Novel drug delivery system for herbal drugs: Phytosomes, Ethosomes, Transferosomals(1hr)

UNIT IV 5 Hours

Evaluation of Drugs WHO guidelines for the assessment of herbal drugs(1hr)
Patenting and Regulatory requirements of natural products:
a) Definition of the terms: Patent, IPR, Farmers right, Breeder’s right, Bioprospecting and Biopiracy.(1hr)
b) Patenting aspects of Traditional Knowledge and Natural Products. Case study of CurcumaandNeem)(1hr)

Regulatory Issues - Regulations in India (ASU DTAB, ASU DCC), Regulation of manufacture of ASU drugs - Schedule Z of Drugs & Cosmetics Act for ASU drugs.(2 hrs)
UNIT V 4 Hours

General Introduction to Herbal Industry
Herbal drugs industry: Present scope and future prospects (1hr)
A brief account of plant based industries and institutions involved in work on medicinal and aromatic plants in India. (1hr)

Schedule T – Good Manufacturing Practice of Indian systems of medicine
Components of GMP (Schedule – T) and its objectives, Infrastructural requirements, working space, storage area, machinery and equipment, standard operating procedures, health and hygiene, documentation and records. (2 hrs)

LIST OF EXPERIMENTS:
1. Perform the preliminary phytochemical screening of crude drugs.
2. Determine the alcohol content of Asava and Arista
3. Prepare standardized extract for cosmetic formulations like creams, lotions and shampoos and their evaluation.
4. Incorporation of prepared and standardized extract in formulations like syrups, mixtures and tablets and their evaluation as per Pharmacopoeial requirements.
5. Monograph analysis of herbal drugs from recent Pharmacopoeias
6. Determination of Aldehyde content in lemon oil
7. Estimation of total Phenolic content
8. Determination of total alkaloids
9. Determination of acid value of the fixed oil sample.

TEXT BOOKS
REFERENCE BOOKS

2. WHO. Quality Control Methods for Medicinal Plant Materials, World Health Organization. Geneva (Latest)

*Latest edition of the text books & reference books can be referred
Course Title L T P Total Hrs. Credits Semester Course Code

<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Pharmacy I (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>V</td>
<td>BP505T</td>
</tr>
<tr>
<td>Industrial Pharmacy I (P)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>1.5</td>
<td>V</td>
<td>BP510P</td>
</tr>
</tbody>
</table>

SCOPE: The course enables the student to understand and appreciate end-to-end drug product development in a pharmaceutical industry. Industrial Pharmacy encompasses the study of preformulation and formulation of solid, liquid, and semisolid dosage forms, as well as the selection and evaluation of packaging materials and the production of aerosols. It provides students with a comprehensive understanding of the principles, techniques involved in the development, manufacturing, packaging and quality control of pharmaceutical products. Students will gain knowledge of the physicochemical properties of drugs and excipients, and learn the skills to design stable and effective dosage forms. Students will also explore various packaging materials and their role in maintaining product integrity.

They will learn professional and ethical approaches towards the manufacturing, quality control, and packaging of pharmaceutical products and recognize its importance to ensure the efficacy, safety, and stability of pharmaceutical products. The scope of Industrial Pharmacy equips students with the necessary knowledge and skills to contribute effectively to the pharmaceutical industry and adhere to regulatory standards.

COURSE LEARNING OUTCOMES:
Upon successful completion of the course the student shall be able to;

KNOWLEDGE

K1: Demonstrate comprehensive knowledge of the principles and concepts related to preformulation and formulation of solid, liquid, and semisolid dosage forms.

K2: Explain the different types of packaging materials used in the pharmaceutical industry and their role in maintaining product integrity and stability.

K3: Analyze the principles and techniques involved in the formulation and production of aerosol dosage forms.

K4: Compare and contrast the physicochemical properties of different pharmaceutical dosage forms and their implications on product development.

K5: Evaluate the various equipments methods and approaches employed in the manufacturing of pharmaceutical formulations.

K6: Demonstrate a comprehensive understanding of the principles and procedures involved in quality control testing of pharmaceutical products.
SKILL
S1: Apply theoretical knowledge to design and develop stable and effective solid, liquid, and semisolid dosage forms.
S2: Demonstrate proficiency in performing preformulation studies, including physicochemical characterization of drug substances and excipients.
S3: Conduct experiments and analyze data to assess the quality of pharmaceutical products.
S4: Apply standard operating procedures (SOPs) and good laboratory practices (GLP) while performing experiments and handling equipment in the industrial pharmacy laboratory.
S5: Develop skills in the formulation and compounding of different types of dosage forms, including tablets, capsules, injections and eye drops.
S6: Acquire hands-on experience in using pharmaceutical manufacturing equipment.

ATTITUDE
A1: Display a professional and ethical approach towards the development, manufacturing, and packaging of pharmaceutical products.
A2: Demonstrate a commitment to continuous learning and staying updated with advancements.
A3: Recognize the importance of quality control in ensuring the safety, efficacy, and compliance of pharmaceutical products.
A4: Show an appreciation for the interdisciplinary nature of industrial pharmacy and the significance of effective collaboration and communication.
A5: Develop a sense of responsibility and accountability towards ensuring the quality of pharmaceutical formulations and packaging.
A6: Embrace a problem-solving mindset as a team and a willingness to explore innovative approaches in addressing challenges related to pharmaceutical formulations.

COURSE CONTENTS
UNIT I 4 Hours
Preformulation Studies: Introduction to preformulation, goals and objectives, study of physicochemical characteristics of drug substances. (1 hr)
Physical properties: Physical form (crystal & amorphous), particle size, shape, flow properties, solubility profile (pKa, pH, partition coefficient), polymorphism, intrinsic dissolution.
Chemical Properties: Hydrolysis, oxidation, reduction, racemisation, polymerization.(1 hr.)
Biopharmaceutical properties: Solubility, permeability and BCS classification. (1 hr)

Drug-excipient interaction.

Application of preformulation considerations in the development of dosage forms. (1 hr)

UNIT II 7 Hours

Oral solid dosage forms-Tablets:

Introduction, ideal characteristics of tablets, classification of tablets. Excipients, Formulation of tablets, granulation methods, compression and processing problems. Equipments and tablet tooling. (3 hrs)

Tablet coating: Types of coating, coating materials, formulation of coating composition, methods of coating, equipment employed and defects in coating. (3 hrs)

Quality control tests: In process and finished product tests (1 hr)

UNIT III 5 Hours

Oral solid dosage forms-Capsules:

Hard gelatin capsules: Introduction, Production of hard gelatin capsule shells. size of capsules, Filling, finishing and special techniques of formulation of hard gelatin capsules, manufacturing defects. In process and final product quality control tests for capsules. (3 hrs)

Soft gelatin capsules: Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, inprocess and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications. (2 hrs)

UNIT IV 7 Hours

Parenteral Products:

Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity. (2 hrs)

Production procedure, production facilities and controls, aseptic processing. (1 hr)

Formulation of injections, sterile powders, large volume parenterals and lyophilized products. (1 hr)

Quality control tests of parenteral products. (1 hr)

Ophthalmic Preparations: Introduction, formulation considerations; formulation of eyedrops, eye ointments and eye lotions; methods of preparation; labelling, containers; evaluation of ophthalmic preparations (2 hr)
UNIT V 7 Hours

Pharmaceutical Aerosols: Definition, propellants, containers, valves, types of aerosol systems; formulation and manufacture of aerosols; evaluation of aerosols; Quality control. (3 hrs)

Packaging Materials Science: Materials used for packaging of pharmaceutical products, factors influencing choice of containers. (2 hr)

Suppositories: Definition, types, advantages and disadvantages, types of bases, methods of preparations. Displacement value & its calculations, evaluation of suppositories. (2 hrs)

LIST OF EXPERIMENTS:
1. Preformulation studies on paracetamol/aspirin/or any other drug
2. Preparation and evaluation of Paracetamol tablets
3. Preparation and evaluation of Aspirin tablets
4. Coating of tablets- film coating of tables/granules
5. Preparation and evaluation of Tetracycline capsules
6. Preparation of Calcium Gluconate injection
7. Preparation of Ascorbic Acid injection
8. Quality control test of (as per IP) marketed tablets and capsules
9. Preparation of Eye drops/ and Eye ointments
10. Preparation of Creams (cold / vanishing cream)
11. Evaluation of Glass containers (as per IP)
12. Preparation of suppositories
 a) Glycerogelatin suppository
 b) Cocabutter suppository
 c) Zinc Oxide suppository
TEXT BOOKS:

REFERENCE BOOKS:

3. Ansel HC. Introduction to Pharmaceutical Dosage Forms by, Lea & Febiger, Philadelphia, 5th edn, 2005

ADDITIONAL READINGS:

*Latest edition of the text books & reference books can be referred.
SCOPE: The course of Pharmacy Practice encompasses a broad range of knowledge and skills related to the practice of pharmacy and the provision of pharmaceutical care. It involves the study of principles, guidelines, and standards for the effective and safe use of medications, as well as the responsibilities of pharmacists in various healthcare settings. Some key aspects within the scope of Pharmacy Practice: Medication Dispensing and Management: Pharmacy Practice covers the proper dispensing and management of medications, including dosage calculations, prescription interpretation, medication preparation, labelling, and storage. Patient Counselling and Education: Pharmacists play a crucial role in providing patient counselling and education on medication use, including dosage instructions, potential side effects, drug interactions, and adherence to treatment regimens. Pharmaceutical Care: Pharmacy Practice emphasizes the provision of patient-centred pharmaceutical care, which involves assessing patients' medication-related needs, identifying and resolving medication therapy problems, and monitoring therapeutic outcomes. Medication Safety and Quality Assurance: This aspect focuses on ensuring medication safety, preventing medication errors, and promoting quality assurance in the pharmacy setting. It includes medication error reporting, medication reconciliation, and adherence to medication safety protocols. Pharmacotherapy and Clinical Pharmacy: Pharmacy Practice involves the study of pharmacotherapy, which includes understanding the principles of drug action, pharmacokinetics, pharmacodynamics, and the rational use of medications in the treatment and management of various diseases and conditions and involves patient care. Pharmacy Practice is a multidisciplinary field that requires a strong foundation in pharmaceutical sciences, patient care, and professional skills. It prepares pharmacists to work in diverse settings, including community pharmacies, hospitals, clinics, research institutions with a focus on optimizing patient outcomes and promoting safe and effective medication use.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Discuss Adverse Drug Reaction (ADR) and its management
K2: Describe the structure of Hospital Formulary
K3: Outline the roles and responsibilities of Pharmacy and Therapeutic Committee
K4: Illustrate the Hospital Pharmacy budget preparation and its implementation.
K5: Explain the management of a drug store in a hospital
K6: Interpret the Clinical laboratory data in diagnosing diseases
SKILL
S1: Detect different types of Adverse drug reactions and reporting
S2: Demonstrate the drug distribution system in hospital
S3: Differentiate prescribed and non-prescription drugs
S4: Evaluate the role of clinical pharmacy services in hospital
S5: Demonstrate the management of drug store
S6: Explain role of Pharmacist in overcoming Antimicrobial resistance (AMR)

ATTITUDE
A1: Participate in ward rounds to detect adverse drug reaction and reporting
A2: Follow the patients till completion of the treatment
A3: Determine the role of pharmacist in connection between prescribers and patients
A4: Distinguish the role of pharmacist with other health care professionals
A5: Evaluate the ASHP guidelines for the use of investigational drugs
A6: Establish the role of Pharmacist in handling Antibiotic resistance

COURSE CONTENTS

UNIT I 5 Hours
Adverse drug reaction Classifications
Adverse drug reaction reporting and management
Allergic drug reactions, genetically determined toxicity, toxicity following sudden withdrawal of drugs(1 hr)
Spontaneous case reports and record linkage studies (1 hr)
Drug interaction- beneficial interactions, adverse interactions, and pharmacokinetic drug interactions, Methods for detecting drug interactions, Drug food /Herb interactions. Examples and mechanisms. Drugs (1 hr)
Excessive pharmacological effects, secondary pharmacological effects, idiosyncrasy(1 hr)
Hospital and its organization: Definition, Classification of hospital- Primary, Secondary and Tertiary hospitals, Classification based on clinical and non-clinical basis, Organization Structure of a Hospital, and Medical staffs involved in the hospital and their functions. (1 hr)

UNIT II 5 Hours
Drug distribution system in Hospital
ASHP guidelines for Hospital drug distribution system
Drug distribution system in a hospital Dispensing of drugs to inpatients, types of drug distribution systems
Charging policy and labelling, dispensing of drugs to ambulatory patients, and Dispensing of controlled drugs. (1 hr)
Hospital formulary Definition, contents of hospital formulary
Differentiation of hospital formulary and Drug list, preparation and revision, and addition and deletion of drug from hospital formulary. (1 hr)
Medication Adherence
Medication adherence Causes of medication non-adherence
Pharmacist role in the medication adherence, and monitoring of patient medication adherence.(1 hr)
Hospital pharmacy and its organization: Definition, functions of hospital pharmacy, Organization structure, Location, Layout and staff requirements, and Responsibilities and functions of hospital pharmacists. (1 hr)

Drug and Poison information centre, Sources of drug information, Computerised services, and storage and retrieval of information Drug information services (1 hr)

UNIT III 6 Hours

Pharmacy and therapeutic committee
Organization, functions, Policies of the pharmacy and therapeutic committee in including drugs into formulary
Inpatient and outpatient prescription, automatic stop order, and emergency drug list preparation. (1 hr)

Patient counselling
Patient counselling: What, Whom, When, How, Where. Counselling on Non-Prescription drugs. (1 hr)

Prescribed medication order and communication skills
Prescribed medication order. Prescribed medication order- interpretation and legal requirements and Communication skills- communication with prescribers and patients. (1 hr)

Community Pharmacy:
Organization and structure of retail and wholesale drug store, types and design, Legal requirements for establishment and maintenance of a drug store. (1 hr)
Dispensing of proprietary products, maintenance of records of retail and wholesale drug store. Patient medication history interview Need for the patient medication history interview, medication interview forms. (1 hr)
Patient counselling Definition of patient counselling; steps involved in patient counselling, and Special cases that require the pharmacist, Community pharmacy management Financial, materials, staff, and infrastructure requirements. (1 hr)

UNIT IV 5 Hours

Budget preparation
Budget preparation and implementation. (1 hr)

Clinical Pharmacy
Introduction to Clinical Pharmacy, Concept of clinical pharmacy, functions and responsibilities of clinical pharmacist
Drug therapy monitoring - medication chart review, clinical review, pharmacist intervention, Ward round participation, Medication history and Pharmaceutical care (1 hr)

Therapeutic drug monitoring Need for Therapeutic Drug Monitoring, Factors to be considered during the Therapeutic Drug Monitoring. (1 hr)
Indian scenario for Therapeutic Drug Monitor. Dosing pattern and drug therapy based on Pharmacokinetic & disease pattern. (1 hr)

Education and training program in the hospital Role of pharmacist in the education and training program, Internal and external training program, Services to the nursing homes/clinics, Code of ethics for community pharmacy, and Role of pharmacist in the interdepartmental communication and community health education (1 hr)
UNIT V 6 Hours

Drug store management

Drug store management and inventory control Organisation of drug store. (1 hr)
Types of materials stocked and storage conditions (1 hr)
Purchase and inventory control: principles, purchase procedure, purchase order (1 hr)
Procurement and stocking, Economic order quantity, Reorder quantity level (1 hr)
Methods used for the analysis of the drug expenditure
Investigational use of drugs- ASHP guidelines for the use of Investigational drugs in institutions.
Description, principles involved, classification, control, identification, role of hospital pharmacist, advisory committee (1 hr)
Over the counter (OTC) sales Introduction and sale of over the counter, and Rational use of common over the counter medications (1 hr)

UNIT VI 3 Hours

Interpretation of Clinical Laboratory Tests

Blood chemistry, haematology, and urinalysis (1 hr)

Antimicrobial resistance

Definition of antimicrobial resistance, Overview of resistance mechanisms, Basics of resistance mechanisms with examples of antimicrobials, AMR surveillance system (1 hr)
Overview on the need for AMR surveillance, recent updated AMR surveillance report, Causes and consequences of AMR, Strategies to combat AMR , Role of pharmacists in overcoming AMR (1 hr)

TEXT BOOKS:

REFERENCE BOOKS:

Latest edition of the text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Skills I (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>V</td>
<td>BP507T</td>
</tr>
</tbody>
</table>

SCOPE: Life Skills training envisages to equip students with essential skills to conduct and perform better in their personal and professional life. Life Skills I is the first level course for the UG students, and it consists of three components namely Soft Skills, Aptitude Skills, and Verbal Skills. The topics covered include communication skill, listening skill, self-confidence, professionalism, emotional intelligence, numbers, percentage, ratio & proportion, averages, data interpretation, data sufficiency, vocabulary, grammar, reasoning and speaking.

COURSE LEARNING OUTCOMES:

CO1: Soft Skills - To develop greater morale and positive attitude to face, analyse, and manage emotions in real life situations, like placement process.

CO2: Soft Skills - To empower students to create better impact on a target audience through content creation, effective delivery, appropriate body language and overcoming nervousness, in situations like presentations, Group Discussions and interviews.

CO3: Aptitude – To analyse, understand and solve questions in arithmetic and algebra by employing the most suitable methods.

CO4: Aptitude - To investigate and apply suitable techniques to solve questions on data analysis.

CO5: Verbal – To infer the meaning of words & use them in the right context. To have a better understanding of the nuances of English grammar and become capable of applying them effectively.

CO6: Verbal - To identify the relationship between words using reasoning skills. To develop the capacity to communicate ideas effectively.

Skills: Communication, self-confidence, emotional intelligence, presentation and problem-solving.

COURSE CONTENTS

SOFT SKILLS

Introduction to Soft Skills

Soft skills and its necessity in the modern age, significance of soft skills in the medical profession, topics to be covered in the soft skills training program.

Communication Skill

The process of communication, barriers to communication, verbal communication and non-verbal communication, role of perception in communication.

Listening Skill
The concept of listening and its significance in the communication process, the importance of listening skill in the medical profession, different types of listening, how to become an effective listener?

Emotional Intelligence

Emotional Intelligence and types of EIs, emotional leadership and how to self-manage and motivate, the process of achieving perseverance, self-control, and skill in getting along with others, EI for working in teams, adjust to change and be flexible.

Self Confidence & Professionalism

Building self-confidence, role of self confidence in personal and professional effectiveness, role of self confidence in effective communication, how to make an effective formal presentation.

Presentations

Preparations, outlining, hints for efficient practice, last minute tasks, means of effective presentation, language, gestures, posture, facial expressions, professional attire.

Presentation Practice and Feedback

Every student will make an individual (or in a group) formal presentation on a chosen topic. The students will be given feedback for improvement.

Being Proactive

The concept of being proactive, the importance of being proactive in life, the stimulus – response model of being proactive – Dr. Stephen R Covey, circle of concern and circle of Influence – Dr. Stephen R Covey, developing proactive language in life.

APTITUDE SKILLS

Numbers

Types, power cycles, divisibility, prime, factors & multiples, HCF & LCM, surds, indices, square roots, cube roots, and simplification.

Percentage

Basics, profit, loss & discount, and simple & compound interest.

Ratio, Proportion & Variation

Basics, allegations, mixtures, and partnership.

Averages

Basics, and weighted average.

Data Interpretation

Tables, bar diagrams, Venn diagrams, line graphs, pie charts, caselets, mixed varieties, network diagrams and other forms of data representation.

Data Sufficiency

Introduction, 5 options data sufficiency and 4 options data sufficiency.
VERBAL SKILLS

Vocabulary

Familiarize students with the etymology of words, help them realize the relevance of word analysis and enable them to answer synonym and antonym questions. Create an awareness about the frequently misspelt words, commonly confused words and wrong form of words in English.

Grammar (Basics)

Learn the usage of grammar and facilitate students to identify errors and correct them.

Reasoning

Stress the importance of understanding the relationship between words through analogy questions.

Speaking Skills

Make students conscious of the relevance of effective communication in today’s world through role plays, debates and individual speaking activities.

REFERENCE BOOKS:

2. The hard truth about Soft Skills, by Amazon Publication.
3. Verbal Skills Activity Book, CIR.
4. Nova’s GRE Prep Course, Jeff Kolby, Scott Thornburg & Kathleen Pierce
5. The BBC and British Council online resources
6. Owl Purdue University online teaching resources
7. www.thegrammarbook.com online teaching resources
8. www.englishpage.com online teaching resources and other useful websites
11. How to Prepare for Quantitative Aptitude for the CAT, Arun Sharma.
12. How to Prepare for Data Interpretation for the CAT, Arun Sharma.
SEMESTER-VI
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicinal Chemistry–III (T)</td>
<td>3</td>
<td>0.5</td>
<td>0</td>
<td>45</td>
<td>3.5</td>
<td>VI</td>
<td>BP601T</td>
</tr>
<tr>
<td>Medicinal Chemistry–III (P)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>30</td>
<td>1.0</td>
<td>VI</td>
<td>BP608P</td>
</tr>
</tbody>
</table>

SCOPE: In continuation to Medicinal Chemistry-I & II, Medicinal Chemistry III applies the principles and techniques of chemistry to identify, design and optimize compounds that can be used as drugs for the treatment of various diseases.

This course is designed to impart fundamental knowledge on the structure, chemistry, and therapeutic use of drugs. The course emphasizes on structure-activity relationships of drugs, the chemical synthesis of important drugs in each class, modern techniques of rational drug design like quantitative structure-activity relationship (QSAR), prodrug concept, combinatorial chemistry, and Computer-aided drug design (CADD). This course’s importance lies in the process of design and development which results in the formation of new synthetic drug compounds. It also works towards improving the whole system that is used to develop the pharmaceuticals. It provides individuals with the necessary knowledge and skills for the design and development of new synthetic molecules. It provides a commitment to continuous learning and staying updated with advancements in the field of medicinal chemistry.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Classify medicinal compounds according to their chemical structure
K2: Describe the modern techniques of rational drug design.
K3: Discuss the basic concepts of prodrug design
K4: Explain the methods and applications of combinatorial chemistry
K5: Outline the synthesis of therapeutic useful drug molecules using available synthetic pathways.
K6: Illustrate the structure-activity relationship of some important drug classes with respect to their biological activity
SKILL

S1: Prepare medicinally important compounds and intermediates from available synthetic pathways
S2: Apply the physicochemical methods to characterize the prepared compounds
S3: Calculate the percentage purity of medicinally important compounds by performing assays per pharmacopoeial procedure
S4: Determine the physicochemical properties for a class of drugs course using the drug design software (Swiss ADME) Drug likeliness screening (Lipinski RO5)
S5: Illustrate the structures and reactions using a chem draw/chem sketch
S6: Apply standard operating procedures (SOPs) and Good Laboratory Practices (GLP) while performing experiments.

ATTITUDE

A1: Demonstrate a commitment to continuous learning and staying updated with advancements in the field of medicinal chemistry
A2: Motivate your fellow beings to be good team players
A3: Participate in group discussions to plan effectively
A4: Follow a professional and ethical approach
A5: Exhibit good communication skills to emerge as compassionate pharmacy professionals.
A6: Appreciate self-motivation and the ability to engage in self-directed learning.

COURSE CONTENTS

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure-activity relationship of a selective class of drugs as specified in the course, and synthesis of drugs superscripted by (*)

UNIT I 7 Hours
Antibiotics

Nomenclature, Stereochemistry, Structure-activity relationship, Chemical degradation classification, and important products of the following classes.

Historical background of Antibiotics, Chemical degradation of penicillin

β-Lactam antibiotics: Penicillin, Cephalosporins,(2 hrs)

β- Lactamase inhibitors,Monobactams (1 hr)

Aminoglycosides: Streptomycin, Neomycin.(1 hr)

Tetracyclines: Tetracyclines, Oxytetracycline, Chlortetracycline, Minocycline (1 hr)
Macrolide: Erythromycin, Clarithromycin, Azithromycin. (1 hr)
Miscellaneous: Chloramphenicol*, Clindamycin, and latest (1 hr)

UNIT II 10 Hours
Antimalarials: Quinolines: SAR, Hydroxychloroquine, Amodiaquine, Primaquine phosphate, Pamaquine*, Mefloquine (3 hrs)
Biguanides and dihydro triazines: Cycloguanil pamoate, Proguanil. (1 hr)
Miscellaneous: Pyrimethamine, Artesunate, Artemether, Atovaquone (1 hr)
Etiology of malaria (1 hr)
Anti-protozoal Agents: Metronidazole*, Tinidazole, Ornidazole, Diloxanide, Iodoquinol, Atovaquone (2 hrs)
Anthemlimints: Diethylcarbamazine citrate*, Thiabendazole, Mebendazole*, Albendazole, Niclosamide, Oxamniquine, Praziquantel, Ivermectin. (2 hrs)

UNIT III 8 Hours
Anti-tubercular Agents
Synthetic anti-tubercular agents: Isoniazid*, Ethionamide, Ethambutol, Pyrazinamide, Para aminosalicylic acid.* (2 hrs)
Anti-tubercular antibiotics: Rifampicin, Capreomycin sulfate, Rifabutin, Cycloserine. (2 hrs)
Urinary tract anti-infective agents
Quinolones: SAR of quinolones, Nalidixic acid, Norfloxacin, Enoxacin, Ciprofloxacin*, Ofloxacin, Lomefloxacin, Sparfloxacin, Gatifloxacin, Moxifloxacin (2 hrs)
Miscellaneous: Furazolidine, Nitrofurantoin*, Methanamine. (2 hrs)

UNIT IV 10 Hours
Antifungal agents:
Antifungal antibiotics: Amphotericin-B, Nystatin, Natamycin, Griseofulvin. (1 hr)
Synthetic Antifungal agents: Clotrimazole, Econazole, Miconazole*, Ketoconazole, Naftifine hydrochloride, Tolnaftate*. Butoconazole, Oxiconazole, Tioconozole, Itraconazole, Fluconazole, Posaconazole (2 hrs)
Antiviral agents: Amantadine hydrochloride, Idoxuridine trifluoride, Acyclovir*, Ganciclovir, Zidovudine, Didanosine (1 hr)
Rimantadine hydrochloride, Zalcitabine, Lamivudine, Loviride, Delavirdine, Ribavirin, Saquinavir, Indinavir, Ritonavir (1 hr)
Sulphonamides and Sulfones: Chemistry, classification and SAR of Sulfonamides: Sulphamethizole, Sulphamethizine, Sulfacetamide*, Sulfamethoxazole* (2 hrs)

Historical development of sulphonamides, Sulfisoxazole, Sulfapyridine, Sulphadiazine, Mefenide acetate, and Sulfasalazine (2 hrs)

Folate reductase inhibitors: Trimethoprim*, Cotrimoxazole.

Sulfones: Dapsone* (1 hr)

UNIT V 10 Hours
Prodrugs: Basic concepts and application of prodrugs design. (3 hrs)

Introduction to Drug Design
Various approaches are used in drug design. (1 hr)
Physicochemical parameters used in quantitative structure-activity relationships (QSAR) such as partition coefficient, Hammet’s electronic parameter, Taft’s sterie parameter, and Hansch analysis. (2 hrs)

Pharmacophore modeling and docking techniques (2hrs)
Combinatorial Chemistry: Concept and applications chemistry: Solid phase and solution phase synthesis (2 hrs)

LIST OF EXPERIMENTS:

I. Preparation of drugs and intermediates
1. Preparation of 7-Hydroxy, 4-methyl coumarin by Pechmann reaction
2. Preparation of 2,3-diphenyl quinoxaline
3. Preparation of 2,4,5-Triphenyl imidazole
4. Preparation of Benzimidazole
5. Preparation of Benzocaine

II. Preparation of medicinally important compounds or intermediates by Microwave irradiation technique. (2 or 3 experiments)

III. Determination of partition coefficient and pka of any two drugs

IV. Drawing structures and reactions using chem draw®

V. Determination of physicochemical properties such as logP, clogP, MR, Molecular weight, Hydrogen bond donors, and acceptors for the class of drugs course content using drug design software (Swiss ADME) Drug likeliness screening (Lipinski RO5)

TEXTBOOKS:

REFERENCE BOOKS:

ADDITIONAL READING MATERIALS:
Indian Pharmacopoeia, Vol 1, 2022

JOURNALS:
Journal of Medicinal Chemistry
European Journal of Medicinal Chemistry
ACS Medicinal Chemistry letters

Latest edition of the text books & reference books can be referred
SCOPE
The Course aims to unravel the scientific principles governing drugs and their interactions with the human body. Knowledge of pharmacology can contribute to the development of new medications by studying the effects of drugs on cells, tissues, and organisms. The course helps identify potential therapeutic targets, design, and synthesize innovative compounds, and assess their safety and effectiveness. It elaborates on drug-receptor interactions, signal transduction pathways, and the influence of drugs on physiological processes, contributing to a comprehensive understanding of their mechanisms of action.

This course sheds light on the body's processing of drugs, touching upon crucial aspects such as bioavailability, drug clearance, and drug-drug interactions. It promotes the safe usage of medications by identifying potential side effects and determining optimal dosage regimens to mitigate adverse reactions. Further, it imparts an in-depth understanding of variability in drug responses among individuals, pharmacogenetics, and drug interactions, guiding the selection of drug and dosage. Moreover, it facilitates academic career progression by enabling research to broaden pharmacology knowledge and training future scientists and healthcare professionals.

COURSE LEARNING OUTCOMES

Upon successful completion of the course student shall be able to;

KNOWLEDGE:

K1: Discuss pharmacological features of the drugs.

K2: Predict the mechanism of drugs that contribute to adverse drug reactions and contraindications.

K3: Illustrate the principles and application of immuno-pharmacology and pharmacogenomics.

K4: Explain the fundamental principles in the management of poisoning.

K5: Describe the concept of chrono-pharmacology and its implications for drug therapy.

K6: Assess various tissue parameters from the given samples.
SKILL:
S1: Justify the relevance of drugs in the pharmacological management of various disorders.
S2: Predict the drug interactions in each prescription.
S3: Identify the signs and symptoms of drug poisoning.
S4: Recommend a chrono-pharmacological approach to optimize drug therapy.
S5: Perform skillfully various tissue analysis.
S6: Operate different lab equipment according to SOPs for preclinical experimentation.

ATTITUDE:
A1: Appreciate the knowledge of Pharmacology for learning pharmacotherapy and toxicology.
A2: Demonstrate a commitment to lifelong learning and professional development.
A3: Communicate with everyone effectively.
A4: Participate in healthcare initiatives.
A5: Support other healthcare professionals in educating society.
A6: Exhibit professionalism in the working environment.

COURSE CONTENTS

UNIT I 7 Hours

Pharmacology of drugs acting on the Respiratory system
Antii-asthmatic drugs, and drugs used in the management of COPD (2 hrs)
Expectorants, antitussives (Cough) (1 hr)

Pharmacology of drugs acting on the Gastrointestinal Tract
Antiulcer agents. (2 hrs)
Diarrhoeals and Anti diarrhoeals (1hr)
emetics and anti-emetics. (1 hr)

UNIT II 6 Hours

Chemotherapy
Introduction: General principles of chemotherapy. (1 hr)
Sulfonamides and cotrimoxazole. (1 hr)
Antibiotics- Penicillins, Cephalosporins (2 hrs)
Chloramphenicol, macrolides, tetracycline and aminoglycosides (1 hr)
Fluoroquinolins, Urinary antiseptics (1 hr)

UNIT III 6 Hours

Chemotherapy
Antitubercular agents (2hrs)
Antifungal agents (1hr)
Antiviral drugs (1hr)
Anthelmintics (1hr)
Antimalarial drugs (1hr)

UNIT IV 7 Hours

Chemotherapy
Classification of different anticancer drugs (1hr)
Pharmacology of different anticancer drugs (3 hrs)

Immunopharmacology
Immunostimulants, immunosuppressant (2hrs)
Protein drugs, monoclonal antibodies, target drugs to antigen, biosimilars (1 hr)

UNIT V 4 Hours

Principles of toxicology
General principles of treatment of poisoning (1 hr)
Clinical symptoms and management of barbiturates, morphine, organophosphorus compound and lead, mercury and arsenic poisoning. (1 hr)

Chronopharmacology: Definition of rhythm and cycles; Biological clock and their significance leading to chronotherapy. (1 hr)

Pharmacogenomics: Definition, Significance of pharmacogenomics in drug therapy (1hr)

LIST OF EXPERIMENTS

1. Demonstrate of the handling of various laboratory animals
2. Perform isolation and collection of the organs from laboratory animals
3. Prepare various buffer solutions for tissue homogenization.
4. Preparation of solutions required to preserve various animal tissues.
5. Estimation of catalase activity in tissue sample
6. Estimation of GSH activity in tissue sample
7. Estimation of Histamine levels in tissue sample
8. Perform tissue processing for histopathology.
10. Perform H & E staining and evaluation of tissue for histopathological analysis.
11. Isolation and quantification of RNA from tissue.
12. Isolation and quantification of DNA from tissue.

TEXT BOOKS:

REFERENCE BOOKS:

4. Satoskar RS, Bhandarkar SD, Nirmala N. Pharmacology and Pharmacotherapeutics. 26th edn. Popular Prakashan; 2020

ONLINE SOURCES:

1. https://cpcsea.nic.in/Content/55_1_GUIDELINES.aspx .2022. CPCSEA guidelines for laboratory animal facility

2. Indian Journal of Pharmacology; https://www.ijp-online.com/

*Latest edition of the text books & reference books can be referred
Course Title

<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopharmaceutics and Pharmacokinetics (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>VI</td>
<td>BP603T</td>
</tr>
</tbody>
</table>

SCOPE: The course focuses on the study of the relationship between the physicochemical properties of a drug, its formulation and route of drug administration on the behaviour of drug in the body. It emphasizes the principles underlying drug absorption, distribution, metabolism, excretion as well as factors influencing these processes. It explores the mechanism of drug absorption across biological membranes and factors influencing drug dissolution. It discusses the factors affecting drug distribution, its barriers and protein binding of drugs. The course includes pathways of drug metabolism and excretion routes. The course gives the concept of bioavailability and bioequivalence.

The course introduces Pharmacokinetics that deal with the quantitative study of drug movement within the body, including processes like absorption, distribution, metabolism, and elimination. It also discusses various pharmacokinetic approaches to study the drug movement in the body. The course imparts knowledge and skills of biopharmaceutics and also appreciates the principles of pharmacokinetics in drug product development.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Outline the basic principles of biopharmaceutics, including drug absorption, distribution, metabolism, elimination processes and the factors affecting it

K2: Illustrate the factors affecting drug absorption and distribution.

K3: Examine the biotransformation of drugs in the body, including phase I and phase II reactions, drug metabolism enzymes, and factors affecting drug excretion.

K4: Explain the concepts of bioavailability and bioequivalence and its methods of estimation.

K5: Classify the different approaches in pharmacokinetic modelling of drugs

K6: Describe the pharmacokinetics of drugs following compartment models and drugs showing nonlinear kinetics.

SKILL

S1: Identify the absorption process of different classes of drug based on mechanism.

S2: Assess the clinical significance of plasma protein binding of drugs

S3: Determine the order of reaction of the drug movement in the body using the given data
S4: Estimate fraction of the administered dose (relative and absolute bioavailability) that enters systemic circulation
S5: Illustrate Compartment models (one and two) to give visual representation of drug disposition and rate process associated with it.
S6: Calculate pharmacokinetic parameters including clearance, volume of distribution, and half-life using the plasma concentration time profile

ATTITUDE
A1: Cooperate and work effectively in groups to study ADME of drugs.
A2: Communicate effectively through presentations.
A3: Follow emerging trends in the field of pharmaceutical sciences
A4: Appreciate all the efforts to improve the knowledge
A5: Cultivate empathy and compassion.
A6: Embrace lifelong learning during professional development

COURSE CONTENTS
UNIT I 8 Hours
Absorption:
Route of drug absorption and passive diffusion of drugs, Absorption of drug from Non per oral extra-vascular routes. Mechanisms of drug absorption through GIT (2hrs)
Physicochemical, pharmaceutical and patient related factors influencing drug absorption through GIT, pH partition Hypothesis. (2hrs)
Distribution:
Definition, Tissue permeability of drugs, Apparent volume of drug distribution (1 hr)
Plasma and tissue protein binding of drugs(1 hr)
Factors affecting protein-drug binding.(1 hr)
Kinetics and Clinical significance of protein binding of drugs.(1 hr)

UNIT II 6 Hours
Elimination:
Biotransformation: Definition and significance, Drug metabolising Enzymes (Drug metabolism and basic understanding of metabolic pathways. (1 hr)
Factors affecting renal excretion of drugs, Renal clearance, (Renal and non renal routes of excretion of drugs) (1 hr)
Bioavailability and Bioequivalence:
Definition and Objectives ,Absolute and relative bioavailability(1 hr)
Measurement of bioavailability, Bioequivalence studies(2 hrs)
Methods to enhance the dissolution rates and bioavailability of poorly soluble drugs (1 hr)

UNIT III 10 Hours
Pharmacokinetics:
Definition and introduction to Pharmacokinetics. Overview of plasma drug concentration time profile.Mathematical Fundamentals in pharmacokinetics (1 hr)
Rate, rate constants and order of reactions.(1 hr)
Pharmacokinetic models: Compartment models, Non compartment models, physiological models.(1 hr)
Pharmacokinetic and pharmacodynamic parameters. Definitions and estimation of
pharmacokinetics parameters - K_e, $t_{1/2}$, V_d, AUC, K_a, Cl_t and CLR. (2 hrs)

One compartment open model

Pharmacokinetics of Intravenous Injection (Bolus) in blood and urine (2 hrs)
Pharmacokinetics of Intravenous infusion: Introduction to steady state drug levels, loading and
maintenance doses and their significance in clinical settings. (1 hr)
Pharmacokinetics of Extravascular administration: Determination of Absorption rate Constant by
Wagner Nelson and method of residuals. (2 hrs)

UNIT IV 3 Hours

Multi compartment models:
Introduction - Two compartment open model. (1 hr)
Pharmacokinetics of IV bolus (2 hrs)

UNIT V 3 Hours

Nonlinear Pharmacokinetics:
Introduction, Factors causing Non-linearity. (1 hr)
Michaelis-menton method of estimating parameters and explanation with example of drugs. (2 hrs)

TEXT BOOKS:

2. V Venkateswaralu. Biopharmaceutics and Pharmacokinetics, PharmaMed Press, 2nd edn 2017

3. Shargel L and Yu AB. Applied Biopharmaceutics and Pharmacokinetics, 7th edn McGraw Hill; 2016

REFERENCE BOOKS:

ADDITIONAL MATERIALS:

1. European Journal of Pharmaceutics and Biopharmaceutics

Latest edition of the text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Pharmacy II (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>VI</td>
<td>BP604T</td>
</tr>
</tbody>
</table>

SCOPE: This course is designed to impart fundamental knowledge on pharmaceutical product scale-up and translation from laboratory to market. It gives an insight into developing defect-free pharmaceutical products that eventually save time, human resources and capital.

The course describes the development of innovative and generic pharmaceuticals. It helps to understand the networks & responsibilities of various national and international regulatory authorities. It also gives a basic knowledge of biostatistics, data management and presentation. It discusses different regulatory bodies of India for technology transfer and related legal documents. It provides a fundamental understanding of International Organization for Standardization. In the classroom, students are encouraged to lead a group, take responsibility, follow institutional ethics and regulations, and engage in group tasks, which helps to potentiate students' leadership quality, sincerity and humanity.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, students shall be able to;

KNOWLEDGE

K1: Explain the pilot plant and scale-up of pharmaceutical dosage forms.
K2: Classify different levels of Scale Up and Post-Approval Changes (SUPAC).
K3: Describe the process of technology transfer from lab scale to commercial batch.
K4: Discuss different principles to minimize defects in pharmaceutical products.
K5: List technology transfer agencies in India.
K6: Compare the regulatory requirements in different stages of drug development.

SKILL

S1: Develop clinical research protocol.
S2: Diagnose the risk involved in pharmaceutical technology transfer/commercialization
S3: Demonstrate a problem from the case study of technology transfer and development.
S4: Comment on Six Sigma Concept.
S5: Implement biostatistics in pharmaceutical product development.
S6: Demonstrate the responsibility of regulatory affair professionals.
ATTITUDE
A1: Recognize and value others' efforts.
A2: Be responsible and sincere.
A3: Follow the regulations of the institute for good professionalism.
A4: Engage in class discussion in a meaningful way.
A5: Take responsibility and lead a group.
A6: Share and care for a harmonious workplace environment.

COURSE CONTENTS

UNIT I 7 Hours
Pilot plant scale-up techniques: General considerations - including significance of personnel requirements, space requirements, raw materials, (1hr)
Pilot plant scale up considerations for solids(2hrs)
Liquid orals(1hr)
Semi-solids and relevant documentation, (1hr)
SUPAC guidelines, (1hr)
Introduction to platform technology(1hr)

UNIT II 6 Hours
Technology development and transfer: WHO guidelines for Technology Transfer(TT):
Terminology, Technology transfer protocol(1hr)
Quality risk management, Transfer from R & D to production (Process, packaging and cleaning), (1hr)
Granularity of TT Process (API, excipients, finished products, packaging materials) (1hr)
Documentation, Premises and equipments, qualification and validation, quality control, analytical method transfer, (1hr)
Approved regulatory bodies and agencies, Commercialization - practical aspects and problems (case studies), TT agencies in India - APCTD, NRDC, TIFAC, BCIL, TBSE / SIDBI; (1hr)
TT related documentation - confidentiality agreement, licensing, MoUs, legal issues (1hr)

UNIT III 8 Hours
Regulatory affairs: Introduction, Historical overview of Regulatory Affairs, Regulatory authorities, (1hr)
Role of Regulatory affairs department, Responsibility of Regulatory Affairs Professionals(1hr)
Regulatory requirements for drug approval: Non-Clinical Drug Development, (1hr)
Pharmacology, Drug Metabolism and Toxicology, General considerations of Investigational New Drug (IND) Application, (1hr)
Investigator's Brochure (IB) and New Drug Application (NDA), (1hr)
Clinical research / BE studies, Clinical Research Protocols, (1hr)
Biostatistics in Pharmaceutical Product Development, (1hr)
Data Presentation for FDA Submissions, Management of Clinical Studies. (1hr)

UNIT IV 4 Hours
Quality management systems: Quality management & Certifications: Concept of Quality, Total Quality Management, (1hr)
Quality by Design (QbD), (1hr)
Six Sigma concept, Out of Specifications (OOS), (1hr)
Change control, Introduction to ISO 9000 series of quality systems standards, ISO 14000, NABL, GLP (1hr)

UNIT V 5 Hours
Indian Regulatory Requirements: Central Drug Standard Control Organization (CDSCO) (1hr)
State Licensing Authority: Organization, Responsibilities, (1hr)
Certificate of Pharmaceutical Product (COPP), (1hr)
Regulatory requirements and approval procedures for New Drugs. (2hrs)

TEXT BOOKS:

REFERENCE BOOKS:

Latest edition of the text books & reference books can be referred
SCOPE: This course provides a comprehensive understanding of the principles and guidelines related to quality assurance in the pharmaceutical sector. This includes knowledge of regulatory requirements, quality systems, documentation, and compliance with Good Manufacturing Practices (GMP). Students learn about various quality control techniques used in pharmaceutical manufacturing, such as sampling methods, analytical testing, and validation of analytical procedures.

This knowledge is essential for ensuring the quality and consistency of pharmaceutical products. It provides individuals with the knowledge and skills required to pursue a rewarding career in the pharmaceutical industry. The specific emphasis on attitudes may vary, but the overall goal is to develop a professional mindset that values quality, safety, compliance, and continuous improvement in the pharmaceutical industry.

COURSE LEARNING OUTCOMES

Upon successful completion of the course student shall be able to;

KNOWLEDGE

K1: Identify regulatory requirements and standards in the pharmaceutical industry.

K2: Review the cGMP aspects in the pharmaceutical industry

K3: Organise quality-related documents like Standard Operating Procedures (SOPs).

K4: Examine the importance of documentation

K5: Categorise the scope of quality certifications applicable to pharmaceutical Industries

K6: Compare the responsibilities of QA & QC departments

SKILL

S1: Identify the regulatory requirements and guidelines governing pharmaceutical quality assurance.

S2: Discover the concept of qualification, calibration, and validation of analytical instruments

S3: Demonstrate the application of quality risk management strategies in quality control of pharmaceuticals.

S4: Allocate analytical methods and instruments for quality assessment of pharmaceutical products.

S5: Ensure the importance of the auditing process and reporting

S6: Analyse and evaluate the effectiveness of quality systems within a pharmaceutical organisation.
ATTITUDE
A1: Develop a positive attitude towards maintaining high-quality standards in pharmaceutical manufacturing.
A2: Encourage critical thinking and problem-solving skills to anticipate potential quality issues.
A3: Ascertain the significance of documentation and record-keeping to ensure traceability and accountability.
A4: Demonstrate a commitment to upholding ethical principles and integrity in pharmaceutical quality assurance practices.
A5: Communicate with other team members to solve problems.
A6: Foster a commitment to upholding regulatory standards.

COURSE CONTENTS

UNIT I 10 Hours

Quality Assurance and Quality Management concepts: Definition and concept of Quality control, Quality assurance, and GMP. Total Quality Management (TQM): Definition, elements, philosophies. (2 hrs)
ICH Guidelines: purpose, participants, the process of harmonisation, Brief overview of QSEM, with special emphasis on Q-series guidelines, ICH stability testing guidelines, General principles of Analytical method development and validation according to ICH Q2 guidelines.(6 hrs)

UNIT II 10 Hours

Equipments and raw materials: Equipment selection, purchase specifications, maintenance, purchase specifications and maintenance of stores for raw materials. (2 hrs)
Quality Control: Quality control test for containers, rubber closures and secondary packing materials. (3 hrs)
Calibration and Validation: Introduction, definition and general principles of calibration, qualification and validation, importance and scope of validation, types of validation, validation master plan. Calibration of pH meter, Qualification of UV-Visible spectrophotometer. (5 hrs)
UNIT III 10 Hours

Document maintenance in the pharmaceutical industry: Batch Formula Record, Master Formula Record, SOP, Quality audit, Quality Review and Quality documentation, Reports and documents, distribution records. (6 hrs)

Warehousing: Good warehousing practice, materials management (2 hrs)

Complaints: Complaints, evaluation of complaints, Handling of returned goods, recalling, and waste disposal. (2 hrs)

TEXT BOOKS:

REFERENCE BOOKS/ONLINE READING:
1. The International Pharmacopoeia – Vol I, II, III, IV- General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excipients and Dosageforms
4. https://www.fda.gov/
5. https://www.iso.org/home.html

JOURNALS:

Biomedical Chromatography.
https://analyticalsciencejournals.onlinelibrary.wiley.com/journal/10990801

Journal of Pharmaceutical and Biomedical Analysis.

*Latest edition of the text books & reference books can be referred
SCOPE: The course aims to comprehend the science behind the treatment of diseases/disorders in humans. The subject offers insights into the basis behind the selection of drugs in various therapies and the role of pharmacological and non-pharmacological interventions in various diseases/disorders. It delivers the safety of medications, identifies potential side effects, and determines appropriate dosage regimens to minimize adverse reactions. Besides, it imparts a better understanding of the importance of drug resistance and combating resistance in treating infections. Additionally, it helps in pursuing careers as a pharmacist and teaching future scientists and healthcare professionals.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, students shall be able to;

KNOWLEDGE

K1: Outline the different classes of clinically relevant drugs used for the management of various diseases/disorders

K2: Discuss the role of pharmacological and non-pharmacological interventions in various diseases/disorders

K3: Explain the basis behind the selection of drugs in various therapies

K4: Illustrate standard treatment guidelines used for various diseases/disorders

K5: Discuss the importance of drug resistance and combating resistance in treating infections.

K6: Describe the management of various diseases/disorders

SKILL

S1: Justify the relevance of drugs in the pharmacological management of various disorders

S2: Predict the drug interactions in polypharmacy

S3: Recommend the possible alternatives to the drug therapy

S4: Identify the signs and symptoms of drug induced toxicity

S5: Convince the public about the rational use of medicines

S6: Recognize prescription errors.

ATTITUDE

A1: Appreciate the knowledge of therapeutics for learning other fields of medical sciences.

A2: Communicate with everyone effectively.

A3: Support and collaborate with others.
A4: Exhibit professionalism in the work environment.
A5: Participate in healthcare initiatives.
A6: Embrace the new advancements in the healthcare system.

COURSE CONTENTS

UNIT I 5 Hours
Introduction to rational use of medicines, Evidence-based medicine, Essential Medicine List, Standard Treatment Guidelines (STGs) (2hrs)
Antimicrobial resistance, Mechanisms, Strategies to combat AMR, Role of Pharmacists in overcoming AMR (1hr)
Pharmacological and non-pharmacological management of,
SARS, CoV2, Conjunctivitis, AIDS (2hrs)

UNIT II 4 Hours
Pharmacological and non-pharmacological management of, Tuberculosis (1hr), Pneumonia(1hr), Malaria (1hr), UTI (1hr)

UNIT III 5 Hours
Cardiovascular system
Pharmacological and non-pharmacological management of,
Hypertension (2hrs)
Myocardial Infarction (1hr)
Hyperlipidaemia (1hr)
Congestive Heart Failure (1hr)

UNIT IV 4 Hours
GI system
Pharmacological and non-pharmacological management of,
GERD, NAFLD (1hr)
Cirrhosis(1hr)
Septic Ulcer, and IBD (2hrs)

UNIT V 6 Hours
Pharmacological and non-pharmacological management of,
Asthma and COPD (2hrs)
Stroke and Migraine(2hrs)
Diabetes Mellitus (1hr)
Thyroid disorders (1hr)
UNIT VI

Pharmacological and non-pharmacological management of,
Anaemia (1hr)
Rheumatoid Arthritis, and Osteoarthritis (1hr)
PCOS, Dysmenorrhea (1hr)
Cancer with emphasis on breast, colorectal, lung, prostate and oral cancers (3hrs)

TEXT BOOKS:

REFERENCE BOOKS:

*Latest edition of the text books & reference books can be referred
Completion of degree in computer science.

Course Title	L	T	P	Total Hrs.	Credits	Semester	Course Code
Life Skills II (T) | 2 | 0.5 | 0 | 30 | 2.5 | VI | BP607T

SCOPE: Life Skills training envisages to equip students with essential skills to conduct and perform better in their personal and professional life. Life Skills II is the second level course for the UG students, and it consists of three components namely Soft Skills, Aptitude Skills, and Verbal Skills. The topics covered include time management, goal setting, group discussion, equations, logarithms, sequence & series, time & work, time & distance, logical reasoning, vocabulary, grammar, reading comprehension and reasoning.

COURSE LEARNING OUTCOMES

CO1: Soft Skills - To improve the inter-personal skills, professional etiquette and leadership skills, vital for arriving at win-win situations in Group Discussions and other team activities.

CO2: Soft Skills - To develop the ability to create better impact in a Group Discussions through examination, participation, perspective-sharing, ideation, listening, brainstorming and consensus.

CO3: Aptitude - To interpret, critically analyse and solve questions in arithmetic and algebra by employing the most suitable methods.

CO4: Aptitude - To analyse, understand and apply suitable methods to solve questions on logical reasoning.

CO5: Verbal - To be able to use vocabulary in the right context and to be competent in spotting grammatical errors and correcting them.

CO6: Verbal - To be able to logically connect words, phrases, sentences and thereby communicate their perspectives/ideas convincingly.

Skills: Communication, etiquette and grooming, inter-personal skills, listening skills, convincing skills, problem-solving skill.

COURSE CONTENTS:

SOFT SKILLS

Time Management

Value of time, setting goals/planning and prioritization, procrastination, monitoring, tools for time management. Preparing personal time management schedules.

Goal Setting

Concept of goal setting, personal values and personal goals, six areas of goal setting, the process of goal setting: SMART goals, how to set SMART goals (Practice).

Personal Grooming and Practices

Basics of corporate culture, key pillars of business etiquette: socially acceptable ways of behaviour, body language, personal hygiene, professional attire, cultural adaptability, handling pressure, multi-tasking, and being enterprising.
Adapting to corporate life: adversity management, health consciousness, people skills, critical thinking and problem solving.

Group Discussion

The purposes of group discussions, types of group discussion and roles played in a group discussion, personality traits evaluated in a group discussion. Initiation techniques and maintaining the flow of the discussion, how to perform well in a group discussion.

Group Discussion Practice

1

APITUDE SKILLS

15

Equations

Basics, linear, quadratic, equations of higher degree, and problems on ages.

Logarithms, Inequalities and Modulus

Basics.

Sequence and Series

Basics, AP, GP, HP, and special series.

Time and Work

Basics, pipes & cistern, and work equivalence.

Time, Speed and Distance

Basics, average speed, relative speed, boats & streams, races, and circular tracks.

Logical Reasoning

Arrangements, sequencing, scheduling, Venn diagram, network diagrams, binary logic, and logical connectives, clocks, calendars, cubes, non-verbal reasoning and symbol based reasoning.

VERBAL SKILLS

15

Vocabulary

Help students understand the usage of words in different contexts.

Grammar (Medium Level)

Train students to comprehend the nuances of grammar and empower them to spot errors in sentences and correct them.

Reading Comprehension (Basics)

Introduce students to smart reading techniques and help them understand different tones in comprehension passages.

Reasoning

Enable students to connect words, phrases and sentences logically.

Oral Communication Skills

Aid students in using the gift of the gab to interpret images, do a video synthesis, try a song interpretation or elaborate on a literary quote.
REFERENCE BOOKS:

3. The Hard Truth about Soft Skills, by Amazon Publication.
4. Verbal Skills Activity Book, CIR.
5. Nova’s GRE Prep Course, Jeff Kolby, Scott Thornburg & Kathleen Pierce
6. The BBC and British Council online resources
7. Owl Purdue University online teaching resources
8. www.thegrammarbook.com online teaching resources
9. www.englishpage.com online teaching resources and other useful websites
11. Quantitative Aptitude for All Competitive Examinations, Abhijit Guha.
13. How to Prepare for Data Interpretation for the CAT, Arun Sharma.
15. Quantitative Aptitude for Competitive Examinations, R S Aggarwal.
17. A Modern Approach to Verbal & Non-Verbal Reasoning, R S Aggarwal
Course Title | L | T | P | Total Hrs. | Credits | Semester | Course Code
--- | --- | --- | --- | --- | --- | --- |
Instrumental Methods of Analysis (T) | 3 | 0.5 | 0 | 45 | 3.5 | VII | BP701T
Instrumental Methods of Analysis (P) | 0 | 0 | 2 | 30 | 1 | VII | BP714P

SCOPE: This course focuses on the principles, techniques, and applications of various analytical instruments used in the pharmaceutical sector. This course deals with gaining a working knowledge of many instrumental analytical methods used in a modern pharmaceutical lab for qualitative and quantitative analysis of drugs. It is designed to impart fundamental knowledge on the principle, instrumentation, and application of spectroscopic and chromatographic techniques. This will expose students to the theoretical explanation of the observed phenomena and the practical aspect of the various instruments. This course will provide opportunities for students to develop strategies for troubleshooting instrument-related issues and resolving analytical challenges.

The course also introduces students to emerging analytical techniques, such as hyphenated techniques and their applications. Hands-on laboratory sessions and practical training on instrument operation and data analysis are integral to this course.

This course emphasises the importance of professionalism in analytical science, including integrity, responsibility, and accountability. This will foster a mindset of critical thinking and problem-solving in analytical scenarios.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1. Recognise common terminologies and definitions used in the instrumental analysis (Understanding)

K2. Discuss the interaction of matter with electromagnetic radiation and its applications in drug analysis (Applying)

K3. Illustrate the fundamental principles and applications of various spectroscopic and Chromatographic techniques (Applying)

K4. Explore basic practical skills using instrumental techniques including the importance of sample preparations and solvent selection (Applying)

K5. Ensure appropriate instrumental techniques for the qualitative and quantitative analysis of drugs (Evaluate)

K6. Compose new analytical methods or optimise existing methods using instrumental techniques. (Create)

SKILL

S1. Compare Operational techniques of UV, HPLC fluorimeter, flame photometer etc. (Understanding)
S2. Develop basic practical skills using instrumental techniques (Applying)
S3. Correlate quantitative & qualitative analysis of drugs using various analytical instruments (Analysing)
S4. Select appropriate instrumental techniques for the qualitative and quantitative analysis of drugs (Analysing)
S5. Interpret the data generated by analytical instruments and understand the significance of the results. (Analysing)
S6. Evaluate knowledge of interpretation of data obtained from spectra and of chromatograms (Evaluate)

ATTITUDE
A1. Show enthusiasm and curiosity towards exploring new techniques and their applications. (Applying)
A2. Explore opportunities for continuous learning and staying updated with advancements. (Applying)
A3. Attain confidence in handling and operating instruments effectively and safely. (Applying)
A4. Embrace professionalism by adhering to ethical standards and best practices in research and data handling. (Applying)
A5. Demonstrate confidence in troubleshooting instrument-related issues and identifying appropriate solutions. (Analysing)
A6. Manage effective communication skills in conveying analytical findings and collaborating with peers and professionals in the field. (Analysing)

COURSE CONTENTS:

UNIT –I 10 hours

Introduction to Spectroscopy

UV Visible spectroscopy
Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert’s law, Derivation and deviations. Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors- Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode. Single beam and Double Beam UV-Visible Spectrophotometers. Applications - Single component analysis, Derivative Spectroscopy and Difference Spectroscopy, Derivatisation Spectroscopy. (5 hrs)

Fluorimetry
Theory, Jablonski Diagram, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications(2 hrs)

Flame Photometry-Principle, interferences, instrumentation and applications (1 hr)

Atomic absorption spectroscopy- Principle, interferences, instrumentation and applications(1 hr)

Nepheloturbidometry- (Principle, instrumentation and applications)(1 hr)
UNIT –II 12 hours

IR spectroscopy
Introduction, fundamental and non-fundamental modes of vibrations in polyatomic molecules, sample handling, factors affecting vibrations, Near IR, Mid IR, ATR. Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector. FT-IR and applications (6 hrs)

Introduction and application of Mass Spectrometry and Nuclear Magnetic Resonance spectroscopy (H & C13) (6 hrs)

UNIT –III 14 hours

Introduction to chromatography (3 hrs)
Adsorption and partition column chromatography- Methodology, advantages, disadvantages and applications.
Thin layer chromatography- Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications.
Paper chromatography- Introduction, methodology, development techniques, advantages, disadvantages and applications

HPTLC: Introduction, theory, instrumentation, and applications Hyphenated techniques-HPTLC-MS/MS. (3 hrs)

High performance Liquid Chromatography (HPLC)- Introduction, theory, Selection of Mobile Phase, instrumentation, applications. Single component and Multicomponent analysis. Hyphenated techniques-LC-MS/MS. (6 hrs)

Gas chromatography - Introduction, theory, instrumentation, derivatisation, temperature programming and applications Hyphenated techniques-GC-MS/MS. (3 hrs)

UNIT –IV 6 hours

Ion exchange chromatography- Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications (3 hrs)
Gel chromatography- Introduction, theory, instrumentation and applications (2 hrs)
Affinity chromatography- Introduction, theory, instrumentation and applications. (1 hr)

UNIT –V 2 Hours

Electrophoresis- Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, SDS-PAGE, capillary electrophoresis, applications (2 hrs).

LIST OF EXPERIMENTS

1. Determination of Isobestic Point of Bromocresol Green Solution
2. Determination of dissociation constant using UV-Visible spectroscopy.
3. Estimation of drugs by Fluorimetric technique.
4. Study of quenching effect in fluorimetry
5. Assay of Furosemide injection by absorptivity value method
6. Assay of Paracetamol tablets by absorptivity value method
7. Assay of Paracetamol tablets by UV-Spectrophotometry using calibration graph method, direct comparison method, absorptivity value method and linear equation method
8. Assay of Chloramphenicol capsules by UV-Spectrophotometry using calibration graph method, direct comparison method and linear equation method
9. Assay of Rifampicin by colorimetry using absorptivity value method
10. Assay of Paracetamol by colorimetry using calibration graph method, direct comparison method, absorptivity value method and linear equation method
11. Assay of Salicylic Acid by Colorimetry
12. Determination of sodium by flame photometry
13. Determination of potassium by flame photometry
15. Interpretation of organic compounds by IR

TEXT BOOKS

REFERENCE BOOKS

JOURNALS:
Biomedical Chromatography.
https://analyticalsciencejournals.onlinelibrary.wiley.com/journal/10990801

Journal of Pharmaceutical and Biomedical Analysis.

Separations https://www.mdpi.com/journal/separations

*latest edition of text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novel Drug Delivery Systems (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>VII</td>
<td>BP702T</td>
</tr>
</tbody>
</table>

SCOPE: This course is intended to provide fundamental knowledge in the field of novel drug delivery systems to overcome the limitations of conventional drug delivery systems. This also helps to understand the critical criterion for selecting drugs and polymers in developing specific novel and controlled drug delivery system. In the course, topics like microencapsulation, elaborately explain coating of solid particles and liquid droplets. The mechanism of mucoadhesion helps to understand the interactive nature of polymers with mucous membranes.

It includes implantable, transdermal drug delivery systems and intrauterine devices designed for months-long drug delivery. Drugs can be directly delivered to the lungs through inhalators. It also discusses intra-ocular barriers and methods to overcome them, which helps to design the formulations to facilitate posterior eye drug delivery. Students participate in group discussions, individual performances, and time-bound tasks in the classroom, which helps improve students' friendly behavior, personality growth, and competency.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, students shall be able to

KNOWLEDGE:

K1: Discuss the basic terminology of novel drug delivery systems.

K2: Explain the criteria for the selection of drugs and polymers for the development of Novel drug delivery systems

K3: Describe various approaches for the development of novel drug delivery systems.

K4: Classify gastroretentive drug delivery system.

K5: Elaborate methods of microencapsulation.

K6: Comment on biological barriers for drug delivery.

SKILL

S1: Design a suitable targeted drug delivery system for specific targeting.

S2: Articulate the fate of the drug through an NDDS to the biological system

S3: Resolve the problem of the existing conventional dosage forms.

S4: Comment on mucoadhesive mechanism.

S5: Differentiate between nasal and pulmonary drug delivery systems.

S6: Assess the challenges of implantable drug delivery system.
ATTITUDE
A1: Motivate your fellow beings to be good team players.
A2: Maintain your focus in class.
A3: Follow the value of lifelong learning.
A4: Participate actively in class discussions.
A5: Be polite and humble
A6: Show kindness for our fellow beings.

COURSE CONTENTS

UNIT I 7 Hours
Controlled drug delivery systems: Introduction, terminology/definitions and rationale, advantages, disadvantages, (1hr)
selection of drug candidates. Approaches to design controlled release formulations based on diffusion, (1hr)
dissolution and ion exchange principles. (1hr)
Physicochemical and biological properties of drugs relevant to controlled release formulations (1hr)
Polymers: Introduction, classification, (1hr)
properties, advantages and application of polymers in formulation of controlled release drug delivery systems. (2hrs)

UNIT II 7 Hours
Microencapsulation: Definition, advantages and disadvantages, (1hr)
microspheres microcapsules, micro particles, methods of microencapsulation (3hrs)
applications
Mucosal Drug Delivery system: Introduction, Principles of bioadhesion / mucoadhesion, concepts, advantages and disadvantages, (1hr)
trans mucosal permeability and Formulation considerations of buccal delivery systems (1hr)
Implantable Drug Delivery Systems: Introduction, advantages and disadvantages,
concept of implants and osmotic pump (1hr)

UNIT III 5 Hours
Transdermal Drug Delivery Systems: Introduction, Permeation through skin, factors affecting permeation, permeation enhancers, (1hr)
 basic components of TDDS, formulation approaches (1hr)
Gastro retentive drug delivery systems: Introduction, advantages, disadvantages, approaches for GRDDS – Floating, high density systems, inflatable and gastro adhesive, systems and their applications (1hr)
Nasopulmonary drug delivery system: Introduction to Nasal and Pulmonary routes of drug delivery, Formulation of Inhalers: dry powder and metered dose, nasal sprays, nebulizers (2hrs)
UNIT IV 5 Hours

Targeted drug Delivery: Concepts and approaches (3hrs)
Advantages and disadvantage, introduction to liposomes, noisome, nanoparticles, (1hr)
monoclonal antibodies and their applications (1hr)

UNIT V 6 Hours

Ocular Drug Delivery Systems: Introduction, intra ocular barriers (2hrs)
and methods to overcome, (1hr)
ocular formulations: conventional, novel and ocuserts (1hr)

Intrauterine Drug Delivery Systems: Introduction, advantages and disadvantages (1hr)
development of intrauterine devices (IUDs) and applications (1hr)

TEXT BOOKS:

3. S.P. Vyas and R.K. Khar, Controlled Drug Delivery - concepts and advances, 1st edn Vallabh Prakashan, New Delhi, 2002

REFERENCE BOOKS:

JOURNALS:

1. Journal of Controlled Release
2. International Journal of Pharmaceutics
3. Drug Development and Industrial Pharmacy

Latest edition of the text books & reference books can be referred.
Biostatistics & Research Methodology (T)

<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biostatistics & Research Methodology (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>VII</td>
<td>BP703T</td>
</tr>
</tbody>
</table>

SCOPE: The course provides an introduction to research methodologies in education, both qualitative and quantitative. It encompasses the application of statistical techniques and research methodologies to the study of health-related data and biomedical research. This course focuses on the selection and design of appropriate study designs for different types of research, such as observational studies (cohort studies, case-control studies), experimental studies (randomized controlled trials), and epidemiological studies. It also includes various methods of collection of relevant data for research purposes.

This course deals with descriptive statistics, inferential statistics, regression analysis, and the application of statistical methods to assess associations, test hypotheses, and draw meaningful inferences from the data as well as the utilization of statistical software packages routinely used in pharmaceutical and clinical research. This course highlights the significance of maintaining data integrity, respecting confidentiality, and engaging with various interdisciplinary researchers to undertake high-quality research.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student shall be able to

KNOWLEDGE

K1: State the fundamental statistical concepts and methods used in pharmaceutical and clinical research.

K2: Outline various study designs and their appropriate applications in different research scenarios.

K3: Discuss the different types of sampling design and identify the various steps in sampling design.

K4: Distinguish between different types of data in research and various methods used for data collection.

K5: Explain key components of research design and statistical analysis, including observational studies, clinical trials, and survey studies.

K6: Review the application of statistical software tools in data management and analysis.
SKILL

S1: Interpret statistical methods and techniques to health-related data
S2: Design study protocols, including data collection tools and study methods.
S3: Communicate research findings effectively through written reports, visualizations, and presentations
S4: Derive appropriate statistical models with suitable assessment based on various samples relevant to pharmaceutical/clinical research
S5: Interpret the data generated in biology, public health and other health sciences using modern statistical methods
S6: Use various computer software to organize, input and analyze data, output results and interpret them (M.S. Excel, SPSS, JMP)

ATTITUDE

A1: Express commitment to ethical conduct and adherence to research regulations and guidelines
A2: Participate in activities for continuous learning and updating knowledge and skills
A3: Respect data integrity, confidentiality, and protection of human subjects
A4: Manage effective communication skills in conveying analytical findings
A5: Appreciate the value of interdisciplinary collaboration in conducting high-quality biomedical research
A6: Assist the healthcare professionals in implementing the correct statistical methods

COURSE CONTENTS:

UNIT I 8 Hours

Introduction: Statistics, Biostatistics, Frequency distribution, Data (1 hr)

Measures of central tendency: Mean, Median, Mode- Pharmaceutical examples (2hrs)

Measures of dispersion: Dispersion, Range, Variance, standard deviation, Mean deviation, Pharmaceutical problems (2 hrs)

Correlation: Definition, Karl Pearson’s coefficient of correlation, Multiple correlation - Pharmaceuticals examples (2 hrs)

Data presentation: Tables and Graphs (Line graph, Bar diagram, Histogram, Pie Chart, Cubic Graph, response surface plot, Counter Plot graph, semilogarthmic plot) (1 hr)
UNIT II 8 Hours

Probability: Definition of probability, Poisson’s distribution, properties - problems Sample, Population, large sample, small sample, Null hypothesis, alternative hypothesis, sampling, essence of sampling, Error I type, Error-II type, Standard error of mean (SEM) - Pharmaceutical examples (3 hrs)

Parametric test: t-test (Sample, Pooled or Unpaired and Paired), ANOVA, (One way and Two way), Least Significance difference (3 hrs)

Non Parametric tests: Wilcoxon Rank Sum Test, Mann-Whitney U test, Kruskal-Wallis test, Friedman test (2hrs)

UNIT III 6 Hours

Introduction to Research: Need for research, Need for design of Experiments, Experiential Design Technique, plagiarism (2hrs)

Designing the methodology: Sample size determination and Power of a study, Report writing and presentation of data, Protocol, Cohorts studies, Observational studies, Experimental studies, Designing clinical trial, various phases. (2hrs)

Sampling: Probability and Non-probability sampling (1 hr)

Statistical software: statistical analysis using excel and standard software (1 hr)

UNIT IV 4 Hours

Blocking and confounding system for Two-level factorials (1 hr)

Regression modeling: Hypothesis testing in Simple and Multiple regression models (1 hr)

Introduction to Practical components of Industrial and Clinical Trials Problems: DESIGN OF EXPERIMENTS, R - Online Statistical Software’s to Industrial and Clinical trial approach (2hrs)

UNIT V 4 Hours

Design and Analysis of experiments:

Factorial Design: Definition, 2^2, 2^3 design. Advantage of factorial design (2hrs)

Response Surface methodology: Central composite design, Historical design, Optimization Techniques (2hrs)

TEXT BOOKS:

REFERENCE BOOKS:
SCOPE: The pharmaceutical industry not only needs highly qualified researchers, chemists and technical people, but also requires skilled managers who can take the industry forward by managing and taking the complex decisions which are imperative for the growth of the industry. The course encompasses a broad scope of topics related to marketing in the pharmaceutical industry. The course focuses on understanding and implementing effective marketing strategies in the pharma sector.

Additionally, the course delves into pricing concepts, including its meaning, importance, objectives, determinants, methods, and strategies. It also addresses specific issues in price management within the pharmaceutical industry and provides an overview of the Drug Price Control Order (DPCO) and the National Pharmaceutical Pricing Authority (NPPA). These topics collectively provide students with a comprehensive understanding of marketing management in the pharmaceutical sector, enabling them to effectively navigate the challenges and opportunities in this industry. By studying these topics, students develop a strong foundation in pharmaceutical marketing management, enabling them to understand market dynamics, make informed decisions regarding product development and promotion, manage sales and distribution channels, and navigate pricing challenges within the pharmaceutical industry.

COURSE LEARNING OUTCOMES:
Upon successful completion of the subject student shall be able to;

KNOWLEDGE

K1. Explain the key concepts and terminologies related to pharmaceutical marketing management.

K2. Describe the principles and theories underlying marketing strategies in the pharmaceutical industry.

K3. Apply the acquired knowledge to develop effective marketing plans for pharmaceutical products.

K4. Analyze market trends and competition to identify opportunities and challenges in pharmaceutical marketing.

K5. Evaluate the effectiveness of different marketing strategies and tactics used in the pharmaceutical industry.

K6. Design innovative marketing campaigns and promotional activities to create a competitive edge in the market.
SKILL
S1. Conduct market research to gather relevant data and insights for pharmaceutical marketing decision-making.
S2. Apply strategic marketing plans and tactics for launching and promoting pharmaceutical products.
S3. Implement brand management strategies to enhance the brand value and positioning of pharmaceutical products.
S4. Plan sales and distribution channels to ensure effective product availability and reach.
S5. Use digital marketing tools and platforms to enhance the online presence and visibility of pharmaceutical products.
S6. Develop effective communication skills to engage with healthcare professionals, stakeholders, and consumers.

ATTITUDE
A1. Demonstrate ethical and responsible behaviour in pharmaceutical marketing, adhering to industry regulations and guidelines.
A2. Adopt a customer-centric mindset to understand and fulfill the needs and preferences of healthcare professionals and patients.
A3. Foster a commitment to continuous learning and stay updated with emerging trends and advancements in pharmaceutical science.
A4. Collaborate effectively with cross-functional teams to develop and execute learning strategies.
A5. Apply critical thinking skills to evaluate market dynamics for informed decisions in pharmaceutical marketing.
A6. Adapt to changes in the pharmaceutical market landscape for customer needs.

LECTURE WISE CONTENTS:

UNIT I 09 Hours
Marketing:
Definition, General concepts and scope of marketing, Distinction between marketing & selling (1hr)
Marketing environment, Industry and competitive analysis (1hr)
Analyzing consumer buying behaviour, Industrial buying behaviour (2hrs).

Pharmaceutical marketing:
Quantitative and qualitative aspects, Size and composition of the market (1hr)
Market segmentation& targeting, Consumer profile (1hr)
Motivation and prescribing habits of the physician (1hr)
Patients’ choice of physician and retail pharmacist (1hr)
Analyzing the Market; Role of market research (1hr).
UNIT II 06 Hours

Product decision:
Classification, Product line and product mix decisions (1hr)
Product life cycle, product portfolio analysis, Product positioning (1hr)
New product decisions (1hr)
Product branding, packaging and labelling decisions (1hr)
Product management in pharmaceutical industry (1hr)
Process involved in the launch of a product into market (1hr).

UNIT III 05 Hours

Promotion:
Methods, Determinants of promotional mix, Promotional budget (1hr)
An overview of personal selling, Advertising (1hr)
Direct mail, Journals, Sampling (1hr)
Retailing, Medical exhibition (1hr)
Public relations, Online promotional techniques for OTC Products (1hr).

UNIT IV 06 Hours

Pharmaceutical marketing channels:
Designing channel, Channel members (1hr)
Selecting the appropriate channel, Conflict in channels (1hr).
Professional sales representative (PSR):
Duties of PSR, purpose of detailing, Selection and training (1hr)
Supervising, Norms for customer calls (1hr)
Motivating, Evaluating (1hr)
Compensation and future prospects of the PSR (1hr).

UNIT V 04 Hours

Pricing
Meaning, Importance, Objectives (1hr)
Determinants of price, Pricing methods and strategies (1hr)
Issues in price management in a pharmaceutical industry (1hr)
An overview of DPCO and NPPA (1hr).

TEXT BOOKS

REFERENCE BOOKS

JOURNALS:

 Website: https://www.tandfonline.com/toc/hpmm20/current
2. International Journal of Pharmaceutical and Healthcare Marketing
 Website: https://www.emeraldgrouppublishing.com/journal/ijphm
3. Journal of Medical Marketing
 Website: https://journals.sagepub.com/home/jmm

* latest edition of text books & reference books can be referred.
SCOPE: This course is intended to provide fundamental knowledge on the regulatory requirements for the approval of new drugs and drug products in regulated markets in India and other. It prepares students to thoroughly understand the regulatory requirements, documentation requirements, and registration procedures for marketing pharmaceutical products. This course offer the students to understand the process of development, monitoring and legal requirements of clinical trial.

It gives an insight of different technical documents essential for pharmaceutical regulatory submission around the globe. Students also learn about Emergency approval of pharmaceuticals in special case. In the classroom students participate in group discussion, individual performance, and challenging tasks, which helps to potentiate students' collaborative behavior, personality growth and compassion.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, student shall be able to;

KNOWLEDGE
K1: Discuss the regulatory process of drug development
K2: Explain the regulatory approval process and their registration in Indian and international markets
K3: Construct Technical documentation
K4: Describe the regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals in India and Overseas.
K5: List the contents of Orange Book.
K6: Differentiate innovator and generic drug product development process.

SKILL
S1: Develop the clinical trial protocol.
S2: Measure the cost of drug development.
S3: Compare the regulatory protocols of India and other countries
S4: Comment on emergency use authorization.
S5: Identify the ethical issues of clinical trials.
S6: Elaborate the responsibilities of Institutional Review Board.
ATTITUDE
A1: Appreciate the work of others.
A2: Be sincere and punctual.
A3: Be a role model for others.
A4: Participate actively in the discussions.
A5: Support your team members for better outcomes.
A6: Share and care for good harmony and work culture.

COURSE CONTENTS

UNIT I 3 Hours
New Drug Discovery and development
Stages of drug discovery, Drug development process, (1hr)
Pre-clinical studies, Non-clinical activities,
Clinical studies, Innovator and generics, (1hr)
Concept of generics, Generic drug product development. (1hr)

UNIT II
Regulatory Concepts and Regulatory Approval Process 10 Hours
Basic terminology: Guidance, Guidelines, Regulations, Laws and Acts (1hr)
Orange book (1hr)
Approval processes and timelines involved in Investigational New Drug (IND)(1hr)
New Drug Application (NDA) (1hr), Abbreviated New Drug Application (ANDA)(1hr)
Changes to an approved NDA / ANDA. (1hr)
Emergency Use Authorization, (1hr)
Public Readiness and Emergency Preparedness Act (PREP Act) (1hr)
Regulatory authorities and agencies
Overview of regulatory authorities of India, (1hr)
United States, European Union, Australia, Japan, Canada (Organization structure and types of applications(2hrs)

UNIT III 10 Hours
Registration of Indian drug product in overseas market
Procedure for export of pharmaceutical products (2hrs)
Technical documentation (1hr)
Drug Master Files (DMF) (3hrs)
Common Technical Document (CTD) (1hr)
Electronic Common Technical Document (eCTD) (1hr)
ASEAN Common Technical Document (ACTD) research(2hrs)
UNIT IV
Clinical trials
7 Hours
Developing clinical trial protocols, (2 hrs)
Institutional Review Board / Independent Ethics committee - formation and working procedures (1hr)
Informed consent process and procedures, (1hr)
GCP obligations of Investigators, (1hr)
Sponsors & Monitors, Managing and Monitoring clinical trials, (1hr)
Pharmacovigilance – safety monitoring in clinical trials(1hr)

TEXT BOOKS:

REFERENCE BOOKS:

* latest edition of text books & reference books can be referred.
SCOPE: This course highlights the activities related to understanding, assessment, detection, and prevention of adverse effects or any other drug-related problems. Transforming the knowledge on the widening scope of pharmacovigilance inclusive of Haemovigilance, Materiovigilance and adverse drug reactions (ADRs) to be provided to regulators, clinicians, and patients.

This course also aimed to observe adverse drug reactions (ADRs) in the real-world setting and evaluate the impact of the pharmacist’s role on ADR monitoring and reporting to improve patient safety. The course urges more collaboration between concerned parties to strengthen the clinical application of pharmacovigilance and market this fundamental process in drug development, post-marketing, and patient health outcome. Support other healthcare professionals in educating society. Follow the International Council for Harmonization (ICH) guidelines for pharmacovigilance.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Define and classify the adverse drug reactions.
K2: Discuss the Pharmacovigilance Program of India (PvPI) requirement for ADR reporting in India and compare the national and international scenarios of pharmacovigilance.
K3: Describe safety data generation in the pre-clinical phase, clinical phase and post-approval phases
K4: Assess the drug safety evaluation in special population (Pediatrics, Pregnancy and lactation, geriatrics)
K5: Illustrate the drug dictionaries, and basic terminologies used in pharmacovigilance
K6: Explain the vaccine pharmacovigilance and adverse events following immunization.

SKILLS

S1: Interpret the Adverse drug reactions from given data
S2: Estimate the safety information on use of medicines to various stakeholders to minimize the risk
S3: Demonstrate the Drug dictionaries and coding in Pharmacovigilance
S4: Evaluate the Vaccine safety surveillance
S5: Perform effective communication skills in Pharmacovigilance
S6: Predict genetic related adverse drug reactions

ATTITUDE

A1: Praise the role of Pharmacovigilance program in India and at the global level
A2: Appreciate the reporting culture amongst healthcare professionals
A3: Participate in Pharmacovigilance awareness program in India
A4: Recognize other healthcare professionals in educating society
A5: Follow the International Council for Harmonization (ICH) guidelines for pharmacovigilance
A6: Support regulatory agencies in the decision-making process on use of medications

COURSE CONTENTS

UNIT I
6 Hours

Introduction to Pharmacovigilance
History and development of Pharmacovigilance, Importance of safety monitoring of Medicine. (1hr)
WHO international drug monitoring programme, Pharmacovigilance Program of India (PvPI), Cosmetovigilance, Materiovigilance and Haemovigilance. (1hr)

Introduction to adverse drug reactions
Definitions and classification of ADRs, Mechanism of adverse drug reactions.(1hr)
Detection and reporting, Methods in Causality assessment, Management of adverse drug reactions(1hr)
Severity and seriousness assessment, Predictability and preventability assessment (1hr)

Basic terminologies used in pharmacovigilance
Terminologies of adverse medication related events, Regulatory terminologies(1hr)

UNIT II
7 Hours

Drug and disease classification
Anatomical, therapeutic and chemical classification of drugs, International classification of diseases, Daily defined doses, International Nonproprietary Names for drugs(1hr)

Drug dictionaries and coding in pharmacovigilance
WHO adverse reaction terminologies, MedDRA and Standardized MedDRA queries, Eudravigilance medicinal product dictionary. (WHO drug dictionary)(1hr)

Information resources in pharmacovigilance
Specialized resources for ADRs, Basic drug information resources (1hr)

Establishing pharmacovigilance program
Establishing in a hospital, Establishment & operation of drug safety department in industry (1hr)
Contract Research Organizations (CROs), Extending to nationwide Primary Health care and Sensitising community Pharmacies. (1hr)

Software’s in Pharmacovigilance
Argus, Aris G and VigiFlow

World Health Organization (WHO)-Uppsala Monitoring Centre (1hr)
VigiBase, VigiLyze, VigiAccess, VigiFlow
vigiGrade, vigiMatch and vigiRank (1 hr)

UNIT III 7 Hours

Vaccine safety surveillance
Vaccine Pharmacovigilance, Vaccination failure and adverse events following immunization. (2hr)

Pharmacovigilance methods
Passive surveillance – Spontaneous reports and case series, Stimulated reporting, Active surveillance – Sentinel sites, drug event monitoring and registries (2hr)
Comparative observational studies – Cross sectional study, case control study and cohort study, Targeted clinical investigations (2hrs)

Communication in pharmacovigilance
Communication in Drug Safety Crisis management, Communicating with Regulatory Agencies (1hr)
Business Partners, Healthcare facilities & Media, Effective communication in Pharmacovigilance (2hrs)

UNIT IV 5 Hours

Safety data generation
Pre-clinical phase, Clinical phase and Post-approval phases (PMS) (1hr)

ICH Guidelines for Pharmacovigilance
Organization and objectives of ICH, Expedited reporting (1hr)
Individual case safety reports, Periodic safety update reports (1hr)
Post approval expedited reporting, Pharmacovigilance planning (1hr)
Good clinical practice in pharmacovigilance studies (1hr)

Unit V 3 Hours

Pharmacogenomics of adverse drug reactions
Genetics-related ADR with example focusing PK parameters, Polymorphism in genes encoding pharmacodynamics parameters and ADRs (1hr)
Drug safety evaluation in special population
Geriatrics, Renal & Hepatic dysfunction, Paediatrics ,Pregnancy and lactation(1hr)

CIOMS
CIOMS Working Groups ,CIOMS Form
CDSCO (India) and Pharmacovigilance
D&C Act and Schedule Y, Differences in Indian and global pharmacovigilance requirements(1hr)

UNIT VI 2 Hours

WHO guidelines on safety monitoring of traditional and herbal medicines in pharmacovigilance systems
Pharmacovigilance of herbal drugs: Definition of traditional and herbal drugs, Challenges relating to the safety monitoring of herbal drugs(1hr)
Mechanisms underlying ADR due to traditional and herbal drugs(1hr)

TEXT BOOKS:

REFERENCE BOOKS:

ONLINE SOURCES:
2. World Health Organization (WHO)-Uppsala Monitoring Centre.

* latest edition of text books & reference books can be referred.
Course Title

<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Control and Standardization of Herbal Products (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>VII</td>
<td>BP711ET</td>
</tr>
</tbody>
</table>

SCOPE: In this course students will be introduced to the regulatory frameworks and quality assurance standards applicable to the herbal industry. They will learn about good manufacturing practices (GMP), quality control, product safety, labeling requirements, and compliance with relevant laws and regulations. They learned about the various methods and guidelines for evaluation and standardization of various herbs and herbal products. It enables students to compare the various analytical techniques in standardization of herbal products. The course deals with WHO Guidelines on current good manufacturing practices (cGMP) and good agricultural and collection practices (GACP) for medicinal plants.

The course provides a comprehensive understanding of stability testing of herbal products. The course provides an opportunity to compare EU and ICH guidelines for quality control of herbal products. It also outlines the documentation for new drug application and export registration. This course is designed to equip students with the necessary skills and knowledge to excel in both the herbal industry and regulatory sectors, with a particular emphasis on fostering ethics and responsibility.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course the student shall be able to

KNOWLEDGE

K1: Describe the guidelines for quality control of herbal products and evaluation of safety and efficacy of herbal products.

K2: Explain Drugs and Cosmetic Act Provision for herbal products preparation and marketing.

K3: Describe the preparation of documents for new drug application and export registration.

K4: Discuss the research guidelines for evaluating the efficacy of herbal products.

K5: Compare the various analytical techniques in standardization of herbal products.

K6: Assess the regulatory requirements for herbal products.

SKILL

S1: Compare EU and ICH guidelines for quality control of herbal drugs

S2: Evaluate the quality control procedures for standardization of herbal products.
S3: Conclude different regulatory requirements for herbal products.
S4: Summarize WHO Guidelines on good agricultural and collection practices (GACP) for medicinal plants.
S5: Compare various Herbal Pharmacopoeias.
S6: Analyze the role of chemical and biological markers in standardization of herbal products.

ATTITUDE
A1: Appreciate diverse perspectives, ideas, and cultures.
A2: Participate actively in discussions.
A3: Accept responsibility.
A4: Develop time management skills.
A5: Appreciate the teamwork and interdisciplinary cooperation.
A6: Cultivate critical thinking skills.

COURSE CONTENTS

UNIT I 7 Hours
Basic tests for drugs – Pharmaceutical substances (2 hrs)
Medicinal plants materials and dosageforms (2 hrs)
WHO guidelines for quality control of herbal drugs.(2 hrs)
Evaluation of commercial crude drugs intended for use (1 hr)

UNIT II 7 Hours
Quality assurance in herbal drug industry of cGMP, GAP, GMP. (2 hrs)
GLP in traditional system of medicine.(1 hr)
WHO Guidelines on current good manufacturing Practices (cGMP) for Herbal Medicines(3 hrs)
WHO Guidelines on GACP for Medicinal Plants.(3 hrs)

UNIT III 6 Hours
EU and ICH guidelines for quality control of herbal drugs.(3 hrs)
Research Guidelines for Evaluating the Safety and Efficacy of Herbal products. (3 hrs)

UNIT IV 5 Hours
Stability testing of herbal medicines. Application of various chromatographic techniques in standardization of herbal products.(2 hrs)
Preparation of documents for new drug application and export registration. (1 hr)
GMP requirements and Drugs & Cosmetics Act provisions.(2 hrs)
UNIT V 5 Hours

Regulatory requirements for herbal products.(1 hr)
WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems (1 hr)
Comparison of various Herbal Pharmacopoeias.(1 hr)
Role of chemical and biological markers in standardization of herbal products (2 hrs)

TEXT BOOKS:
1. Mukherjee PK. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals.

REFERENCE BOOKS:

ADDITIONAL READING MATERIALS
2. EMA Guidelines on Quality of Herbal Medicinal Products/Traditional Medicinal Products.(Latest)
SCOPE: This course is designed to provide fundamental knowledge of the rational drug design process and computer-assisted drug design. It also covers the various strategies for developing drug-like molecules using molecular docking and 2D-QSAR techniques.

The course covers analogue drug design and bioisosteric replacement. Case studies of docking, 2D-QSAR, ADME prediction and De novo drug design. The syllabus also emphasizes the introduction to molecular mechanics, quantum mechanics and different types of energy minimisation methods.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to:

KNOWLEDGE

K1: Describe the discovery of lead molecules (Remembering).
K2: Explain the basic principles and parameters used in QSAR (Comprehension).
K3: Apply the basic concept of molecular docking with examples (Application).
K4: Determine the ADME properties of drug-like molecules (Analysis).
K5: Categorize the different types of bioisosteric replacement (Synthesis).
K6: Predict the pharmacophore mapping (Evaluation).

SKILL

S1: Demonstrate the difference between rigid and flexible docking.
S2: Calibrate the 2D-QSAR equations of different classes of compounds.
S3: Operate with various strategies to develop new drug-like molecules.
S4: Detect the binding energies of different classes of molecules by docking.
S5: Estimate the different energy minimization methods in molecular modelling.
S6: Demonstrate the De novo drug designing by using CADD software.

ATTITUDE

A1: Appreciate the role of CADD in drug discovery and healthcare
A2: Participate in cultivating a data-driven approach.
A3: Embrace a mind set of a continuous learning process
A4: Recognise the importance of artificial intelligence in modern drug design and development.
A5: Develop the interdisciplinary mind set
A6: Work as a team and complete the tasks on time.

COURSE CONTENTS:

UNIT – I 4 Hours

Lead discovery and Analog Based Drug Design

Rational approaches to lead discovery based on traditional medicine, Random screening, Non-random screening, Serendipitous drug discovery, Lead discovery based on drug metabolism, Lead discovery based on clinical observation successful (2hrs)
Analog-Based Drug Design: Bioisosterism, Classification, Bioisosteric replacement
Case studies (2hrs)

UNIT – II 8 Hours
Quantitative Structure Activity Relationship (QSAR)
SAR versus QSAR (1hr)
History and development of QSAR, Types of parameters used in QSAR (4 hrs)
Hansch analysis and Free Wilson analysis (3 hrs)

UNIT – III 8 Hours
Molecular Modeling and virtual screening techniques
Virtual Screening Techniques:
Drug likeness screening (1hr)
Concept of pharmacophore mapping and pharmacophore-based Screening (3hrs)
Molecular docking:
Rigid docking, Flexible docking, manual docking, Applications (2hrs)
De novo drug design. (2hrs)

UNIT – IV 5 Hours
Informatics & Methods in drug design
Introduction to Bioinformatics and chemoinformatics (2hrs)
ADME databases(2hrs)
Pharmaceutical databases (1 hr)

UNIT – V 5 Hours
Molecular Modelling
Introduction to molecular mechanics and quantum(2hrs)
Energy Minimization methods (2hrs)
Global conformational minima determination(1 hr)

TEXT BOOKS:

REFERENCE BOOKS:

* latest edition of text books & reference books can be referred
Course Title | L | T | P | Total Hrs. | Credits | Semester | Course Code
---|---|---|---|---|---|---|---
Cell and Molecular Biology (T) | 2 | 0.5 | 0 | 30 | 2.5 | VII | BP709ET

SCOPE: The course is designed to impart knowledge on the interactions between the various systems of a cell, including the interactions between DNA, RNA, and protein biosynthesis, and studies of how these interactions are regulated in inflammation and cancer. It also describes the flow of genetic information in cells, DNA replication, and coding for the RNA through the transcription process, and further RNA codes for the proteins by translation.

The course also includes major pathways involved in inflammation, cancer, and neurodegenerative disease pathophysiology. In addition, fundamental techniques of cell culture studies are involved in the proper understanding of cellular events. It also encompasses Cell-based assays for cell viability studies, cell cycle analysis, and apoptosis, widely used in basic and translational research as cost-effective and accessible models to mimic *in vivo* responses. This course enables the students to succeed in diverse career paths in the pharmaceutical as well as biotechnological sectors with an emphasis on creativity, confidence, ethics and responsibility.

COURSE LEARNING OUTCOMES:
Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Discuss the history and development of Cell and Molecular biology research (Understanding)

K2: Explain the central dogma of molecular biology in the conventional and modern eras.

(Understanding)

K3: Describe the cellular process, cellular pathways, and cell cycle events.

(Understanding)

K4: Compare the concept of transcription and translation in Eukaryotes and Prokaryotes

(Understanding)

K5: Distinguish the concept of DNA replication in Eukaryotes and Prokaryotes (Understanding)

K6: Demonstrate the procedures in animal cell maintenance (Applying)

SKILL

S1: Demonstrate the different cell organelles in a eukaryotic cell.

S2: Identify the key regulatory protein involved in support of the chromosome.
S3: Detect the different cell organelles in a eukaryotic cell.
S4: Illustrate the cellular events in the mitotic division.
S5: Outline the different phases of the cell cycle in a set of cell populations by flow cytometry.
S6: Assess the apoptotic phase of the cells using flow cytometry.

ATTITUDE
A1: Think critically and apply innovative solutions to challenges.
A2: Develop the ability to interact effectively and respectfully with individuals from diverse cultural backgrounds.
A3: Participate autonomously in a technical and supervisory context.
A4: Accept responsibility for self and group work.
A5: Follow personal values and apply ethical principles in professional and social contexts.
A6: Embrace knowledge for sustainable development.

COURSE CONTENTS:

UNIT I
Central Dogma of molecular biology 12 Hours
Cell and Molecular Biology: History and application (1hr)
Basic concepts of the structure of Prokaryotic versus Eukaryotic cells, Properties of cell and cell membrane DNA and RNA and their structures, and Proteins and their structure (1hr)
DNA Replication in eukaryotes. Differentiate from Prokaryotes (1hr)
Types of RNA & mRNA processing. Structure and function of different types of RNA. The process involved in alternate splicing (1hr)
Transcription: steps involved in Eukaryotic transcription, different types of RNA polymerases and their function(2hrs)
Compare and contrast with transcription in Prokaryotes, the post-transcriptional modifications (2hrs)
Translation: Steps in protein translation, genetic code, the significance of protein synthesis(2hrs)
Compare and contrast with the prokaryotic system, post-translational modifications (2hrs)
UNIT II

Signal transduction 8 Hours

Cell Signals: Definition of cell signals, cell surface receptors and signal transduction with suitable examples (3hrs).

Signaling Pathways: Enlist the major pathways in Inflammation, cancer and neurodegenerative disease (2hrs).

Misregulation of Signaling Pathways in - NF-κB, MAPK, and JAK-STAT and P53 mediated pathway (3hrs)

UNIT III

Animal Cell culture 10 Hours

Growth of animal cells in culture: Characteristics of cultured cells, Physicochemical properties of culture media, Maintenance of subculture as monolayer cultures and suspension cultures, General procedure for maintaining cell cultures the techniques of primary culture as mechanical disaggregation and enzymatic disaggregation. (3hrs)

2D and 3D Cell Culture: development, challenges, and future trends (3hrs)

Principles of cell viability assay- based on membrane integrity and cell survival (2hrs)

Cell cycle analysis & Apoptosis: Measurement of apoptosis and autophagy (2hrs)

TEXTBOOKS:

3. Glick,Bernard R and Patten,Cheryl L. Molecular biotechnology:principles and applications of recombinant DNA.5th edn, ASM press, Washington D.C; 2010

REFERENCE BOOKS:

2. Davis,J M. Basic Cell Culture.2nd edn, Oxford University Press, London;2005
JOURNALS:

1. BMC Molecular and Cell Biology [https://bmcmolcellbiol.biomedcentral.com/]
2. Nature Reviews Molecular Cell Biology [https://www.nature.com/nrm/]
3. Molecular and Cellular Biology [https://www.tandfonline.com/journals/tmcb20]

The latest edition of text books & reference books can be referred.
SCOPE: This course is designed to impart knowledge and skills necessary for the fundamental need of cosmetic and cosmeceutical products. It also provides a foundation to understand the current and future advancement in cosmetics with respect to skin care ingredient technologies, basics of skin care formulation development and essential compliance requirements regarding cosmetic product labels, marketing and product performance claims. The course offers a comprehensive scope in addressing problems associated with skin, hair, and teeth. Students will explore the principles of formulation, focusing on the building blocks of skin, hair, and oral care products. They will learn about the various cosmetic excipients used in these formulations, understanding their functions and compatibility with active ingredients.

The course also covers the specific labeling requirements for these products, ensuring compliance with regulations and providing accurate information to consumers. The students will study the development of cosmetics tailored for babies, taking into account their unique needs and safety considerations. Furthermore, they will delve into the field of herbal cosmetics, exploring natural ingredients and their efficacy in promoting skin, hair, and oral health. Overall, the course equips students with the knowledge and skills necessary to address common skin, hair, and teeth problems, show enthusiasm for exploring novel and effective cosmetic products, meet regulatory standards, and cater to diverse consumer needs in the realm of cosmetics and cosmeceuticals.

COURSE LEARNING OUTCOMES

Upon successful completion of the subject student shall be able to;

KNOWLEDGE
K1: Explain the fundamental concepts and terminologies related to cosmetic science.
K2: Describe the principles and theories underlying various cosmetic formulations and their applications.
K3: Identify the key ingredients used in cosmetics and cosmeceuticals.
K4: Apply the acquired knowledge to analyze and solve practical problems in cosmetic formulation and development.
K5: Analyze the various parameters affecting the efficacy of cosmetic products.
K6: Evaluate the regulatory requirements and guidelines governing the manufacturing, labeling, and safety assessment of cosmetic products.

SKILL
S1: Apply theoretical concepts to evaluate cosmetic product formulations.
S2: Demonstrate proficiency in interpreting cosmetic product labels.
S3: Use theoretical knowledge to suggest appropriate modifications to improve cosmetic product formulations.
S4: Develop a theoretical understanding of the quality control and quality assurance processes involved in cosmetic product manufacturing.

S5: Identify basic laboratory skills and techniques required for cosmetic science, such as accurate measurement, mixing, and basic product testing.

S6: Display proficiency in cosmetic product development and its optimization.

ATTITUDE

A1: Embrace a collaborative mindset, actively engaging in discussions and teamwork to foster innovation and share ideas.

A2: Develop an appreciation for the importance of safety and quality in a formulation and manufacturing set up.

A3: Cultivate a curious and inquisitive mindset, actively seeking new knowledge and understanding of scientific principles and advancements.

A4: Show enthusiasm for exploring novel formulation approaches.

A5: Display a proactive approach to problem-solving, embracing challenges and propose effective solutions.

A6: Exhibit self-motivation and the ability to engage in self-directed learning.

COURSE CONTENTS

UNIT I

6 Hours

Introduction to cosmetics: Classification of cosmetic and cosmeceutical products

Definition of cosmetics as per Indian and EU regulations

Evolution of cosmeceuticals from cosmetics (1hr).

Skin: Basic structure and function of skin (1hr).

Hair: Basic structure of hair. Hair growth cycle (1hr)

Oral Cavity: Common problem associated with teeth and gums (1hr).

Cosmetic excipients:

- Surfactants
- Rheology modifiers
- Humectants
- Emollients
- Preservatives

Classification and application (2hrs)

UNIT II

8 Hours

Principles of formulation and building blocks of skin care products and its labelling requirements:

Face wash, Moisturizing cream, Cold Cream, Vanishing cream and their advantages and disadvantages

Application of these products in formulation of cosmeceuticals (2hrs)

Antiperspirant & deodorants- Actives & mechanism of action (1hr)

Principles of formulation and building blocks of Hair care products and its labelling requirements:

Conditioning shampoo, Hair conditioner, Anti-dandruff shampoo

Hair oils, Chemistry and formulation of Para-phenylene diamine based hair dye (2hrs).
Principles of formulation and building blocks of oral care products and its labelling requirements:
Toothpaste for bleeding gums, Sensitive teeth (2hrs), Toothpaste for Teeth whitening
Mouthwash (1hr).

UNIT III 6 Hours
Sun protection
Sun protection and its importance (1hr)
Classification of Sunscreens with suitable examples and its labelling requirements
Sun Protection Factor (SPF) and its significance (1hr).
Role of herbs in cosmetics:
Skin Care: Aloe and turmeric (1hr)
Hair care: Henna and amla
Oral care: Neem and clove (1hr)
Analytical cosmetics:
BIS specification and analytical methods for shampoo (1hr)
Skin cream and toothpaste (1hr)

UNIT IV 4 Hours
Principles of Cosmetic Evaluation:
Principles of sebumeter (1hr)
Principles of Corneometer
Measurement of TEWL (1hr)
Skin Color
Hair tensile strength
Hair combing properties (1hr)
Soaps and syndet bars (1hr).

UNIT V 6 Hours
Cosmetic problems associated with Hair and scalp: Dandruff, Hair fall causes (1hr)
Cosmetic problems associated with skin: Wrinkles, acne, prickly heat and body odor.
Basic understanding of the terms - Comedogenic and Dermatitis (2hrs).
Cosmetic Products for Babies:
Introduction, skin problems in babies, requirement of baby products (1hr)
Safety aspects of baby products, examples, formulations, labels etc (2hrs).

TEXT BOOKS:
 2000.
3. P. P. Sharma. Cosmetics: Formulation, Manufacturing & Quality Control. 6th edn,
REFERENCE BOOKS:

JOURNALS:

1. Cosmetics (Publisher- MDPI publishers).

*The latest edition of text books & reference books can be referred.
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preclinical Pharmacology (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>VII</td>
<td>BP710ET</td>
</tr>
</tbody>
</table>

SCOPE: This course is designed to impart knowledge on the various guidelines for the maintenance, breeding and conduct of experiments in laboratory animals. It helps to give an insight into the *in vivo* preclinical evaluation of drugs and recent experimental techniques in drug discovery and development. Moreover, it helps in calculating the dose of drugs required for animal experimentation and justifying the method required for tissue sampling and analysis. The course helps in predicting suitable animal models for the screening of drugs. It helps the student to understand the planning and execution of various *in-vivo* preclinical evaluations. Additionally, it helps in pursuing careers in academia and conducting research to expand knowledge in pharmacology.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the students shall be able to;

KNOWLEDGE

K1: Outline the various guidelines for the maintenance, breeding and conduct of experiments in laboratory animals
K2: Describe the various animal models to screen various drugs
K3: Identify the type and number of animals required to conduct the screening of a test substance
K4: Explain the use of various animals used in the experimental pharmacology
K5: Calculate the dose of drugs required for animal experimentation
K6: Justify the method required for tissue sampling and analysis.

SKILL

S1: Rationalize the use of various animal models in the screening of drugs
S2: Predict the suitable animal models for the screening of drugs.
S3: Recommend the appropriate standard drugs used for comparing the action of novel molecules
S4: Develop SOPs for carrying out experimentation on animals
S5: Plan and validate animal experimentation according to the GLP guidelines
S6: Identify the behavioural changes in animals during the screening of various drugs

ATTITUDE

A1: Appreciate the knowledge of Pharmacology for developing new animal models.
A2: Communicate effectively with peers and others
A3: Support and collaborate with others.
A4: Exhibit professionalism in the work environment.
A5: Participate actively in workshops to improve knowledge
A6: Embrace newer advancements in the healthcare system.

COURSE CONTENTS

UNIT I
Introduction to Preclinical screening models
In vitro and Alternative preclinical models (1hr)
CPCSEA and OECD guidelines for maintenance, breeding and conduct of experiments in laboratory animals (2hrs)
Dose selection, Calculation and conversions (1hr)
Preparation of drug solution/suspensions (1hr)
Grouping of animals and the importance of sham negative and positive control groups, the rationale for selecting animal species and sex for the study (1hr)

UNIT II
Tissue processing techniques for various evaluations (1hr)
Tissue-based evaluation and criteria behind tissue selection (1hr)
Types of studies conducted on animals. (Emphasis on drug screening studies, toxicity studies, and safety pharmacological studies) (2hrs)
Need for transgenic animals and their application (1hr)

UNIT III
In-vivo screening of;
analgesics (1hr)
Antipyretics (1hr)
Behavioural studies in animals (2hrs)
Nootropics (1hr)

UNIT- IV
In-vivo screening of;
Antiepileptics (1hr)
Antipsychotics (1hr)
Anti-Parkinson’s agents (1hr)
Anti-Alzheimer’s disease (1hr)
Anti-Multiple Sclerosis (1hr)

UNIT V
In-vivo screening of;
Antihypertensives (1hr)
Diuretics (1hr)
Antiarrhythmics (1 hr)
Hypolipidemicals (1 hr)
UNIT VI 5 Hours

In-vivo screening of:
Antiulcer agents (1hr)
Anti colitic agents (1hr)
Antidiabetics (1hr)
Anticancer (1hr)
Anti-arthritic agents (1hr)

TEXTBOOKS:

REFERENCE BOOKS:

*Latest edition of the text books & reference books can be referred
SCOPES: The course is designed to impart knowledge on dietary supplements and nutraceuticals and their impact on chronic disease prevention. It also discusses important marketed dietary supplements, nutraceuticals, and functional foods that can be appropriately used to improve health and well-being. It also covers the occurrence, chemical features, and medicinal benefits of phytochemicals of nutraceutical relevance. It also details the role of nutraceuticals in intestinal health and mental health.

Free radicals’ impact on chronic disease and their management with antioxidants are also discussed. It also focuses on Public health nutrition, maternal and child nutrition, nutrition and ageing, and nutrition education in the community. The regulatory aspects of challenges associated with the marketing of nutraceuticals and dietary supplements are also highlighted. This course ensures a participatory role as responsible citizens and facilitates improvement in health and well-being.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Explain the need for dietary supplements to maintain healthy life (Understanding)

K2: Discuss the marketed nutraceuticals with their positive health outcome. (Understanding)

K3: Describe the occurrence, chemical features, and medicinal benefits of phytochemicals of nutraceutical relevance (Understanding)

K4: Outline the regulatory and commercial aspects of dietary supplements (Understanding)

K5: List phytochemicals as nutraceuticals and their scope in chronic disease prevention. (Understanding)

K6: Illustrate the pharmacopoeia specifications for dietary supplements and nutraceuticals. (Understanding)

SKILL

S1: Identify the metabolites of the nutritional component or nutraceuticals.

S2: Demonstrate the preparation of nutraceuticals.

S3: Assess the risk factors for approval of nutraceuticals in the Indian, US, and European markets.
S4: Detect the limitations of marketed nutraceuticals.
S5: Analyze the environmental factors affecting the potential of nutraceuticals.
S6: Measure the antioxidant enzyme level in diseased as well as treated conditions.

ATTITUDE

A1: Upgrade technical, intellectual, and emotional skills and facilitate improvement.
A2: Develop the ability to interact effectively and respectfully with individuals.
A3: Participate autonomously in a technical and supervisory context.
A4: Accept responsibility for self and group work.
A5: Implement plans and organize work to meet deadlines.
A6: Appreciate collaborative skills to work effectively in interprofessional healthcare teams.

COURSE CONTENTS

UNIT I 12 Hours

Nutraceuticals in human disease
Definitions of Functional foods, Nutraceuticals and Dietary supplements with suitable examples & available marketed products for chronic disease prevention (3 hrs)
Phytochemicals as nutraceuticals: Occurrence and characteristic features (chemical nature medicinal benefits) of following:
Carotenoids- α and β-Carotene, Lycopene, Xanthophylls, leutin (2hrs)
Sulfides: Diallyl sulfides, Allyl trisulfide. (1hr)
Polyphenolics: Reserve tool (1hr)
Flavonoids- Rutin, Naringin, Quercitin, Anthocyanidins, Catechins, Flavones (2hrs)
Prebiotics / Probiotics: Fructo-oligosaccharides, *Lacto bacillus* (1hr)
Role of nutraceuticals in intestinal health and mental health (2hrs)

UNIT II 12 Hours

Free radicals and human disease
Introduction to free radicals: Free radicals, reactive oxygen species, production of free radicals in cells, damaging reactions of free radicals on lipids, proteins, Carbohydrates, and nucleic acids. (2hrs)
Free radicals in Diabetes mellitus, Inflammation, Cancer, and CVD (4hrs)
Free radicals in brain metabolism and pathology, kidney damage, and liver damage (2hrs)
Free radical’s theory of aging. (1hr)
Antioxidants: Endogenous antioxidants – enzymatic and non-enzymatic antioxidant defense, Superoxide dismutase, catalase, Glutathione peroxidase, Glutathione, Vitamin C, Vitamin E, α- Lipoic acid, melatonin Synthetic antioxidants: Butylated hydroxyl Toluene, Butylated hydroxyl Anisole (3hrs)
UNIT III

Nutrition in Health and its regulatory aspects 6 Hours

Regulatory Aspects: The regulatory issues of Nutraceuticals and Dietary Supplements as per EU, US, and Indian guidelines. FSSAI, FDA, FPO, MPO, AGMARK. HACCP and GMPs on Food Safety. (3hrs).

Pharmacopoeia Specifications for dietary supplements and nutraceuticals. (1hr)

Effect of processing, storage, and interactions of various environmental factors on the potential of nutraceuticals. (1hr)

Public health nutrition, maternal and child nutrition, nutrition and aging, and nutrition education in the community. (1hr)

TEXTBOOKS:

REFERENCE BOOKS:
2. Cooper K.A. Advanced Nutritional Therapies. 1st edn.. USA Thomas Nelson Inc; 1997

JOURNALS:
1. Journal of Food Science and Technology
 https://www.springer.com/journal/13197
2. Food Science and Nutrition
 https://onlinelibrary.wiley.com/page/journal/20487177/homepage/publishing_with_food_science_nutrition.htm
3. Nutrients
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352266/
4. Journal of Functional Food

*Latest edition of the text books & reference books can be referred
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Skills III (T)</td>
<td>2</td>
<td>0.5</td>
<td>0</td>
<td>30</td>
<td>2.5</td>
<td>VII</td>
<td>BP713T</td>
</tr>
</tbody>
</table>

SCOPE: Life Skills training envisages to equip students with essential skills to conduct and perform better in their personal and professional life. Life Skills III is the third level course for the UG students, and it consists of three components namely Soft Skills, Aptitude Skills, and Verbal Skills. The topics covered include teamwork, leadership, facing interview, stress management, geometry, permutation & combination, probability, statistics, vocabulary, reasoning, reading comprehension, and writing.

COURSE LEARNING OUTCOMES

CO1: Soft Skills - To acquire the ability to work in teams, present themselves confidently and showcase their knowledge, skills, abilities, interests, practical exposure, strengths and achievements to potential recruiters through a resume, video resume, and personal interview.

CO2: Soft Skills - To have better ability to prepare for facing interviews, analyse interview questions, articulate correct responses and respond appropriately to convince the interviewer of one’s right candidature through displaying etiquette, positive attitude and courteous communication.

CO3: Aptitude - To manage time while arriving at appropriate strategies to solve questions in geometry, statistics, probability and combinatorics.

CO4: Aptitude - To analyse, understand and apply suitable methods to solve questions on logical reasoning and data analysis.

CO5: Verbal - To use diction that is less verbose and more refined and to use prior knowledge of grammar to correct/improve sentences.

CO6: Verbal - To understand arguments, analyse arguments and use inductive/deductive reasoning to arrive at conclusions. To be able to generate ideas, structure them logically and express them in a style that is comprehensible to the audience/recipient.

Skills: Communication, teamwork, leadership, facing interviews and problem-solving.

COURSE CONTENTS:

SOFT SKILLS

Teamwork

Definition of a team, value of teamwork in organizations, effective team-building, parameters for a good team, roles, empowerment and need for transparent communication, factors affecting team effectiveness, personal characteristics of members and its influence on team.

Team problem solving activities to demonstrate the process and dynamics of team work. Every team member participates in team problem solving activity.

Leadership
Role of leadership in team performance. Internal problem solving, growth and productivity, evaluation and co-ordination. Demonstrations, case studies and activities.

CV Preparation
Preparation of an industry relevant CV and reviewing the same.

Stress Management
The causes of stress and different types of stressors, different stressors in medical profession / reference to the pharma profession, identifying stressors in an individual, the process of stress, effective ways of managing stress.
Activities to measure individual stressors. Brain storming and discussions.

Facing Interview
Purpose of job interview, types of job interviews, how to prepare for an interview, dos and don’ts of interview.

Mock Interview
Few practice sessions in the class and one on one sessions outside the class hours.

APTITUDE SKILLS

Geometry
Coordinate geometry, and heights & distance.

Permutations & Combinations
Basics, fundamental counting principle, circular arrangements, and derangements.

Probability
Basics, addition & multiplication theorems, conditional probability, and Bayes’ Theorem.

Statistics
Mean, median, mode, range, and standard deviation.

Logical Reasoning
Blood relations, direction test, syllogisms, series, odd man out, coding & decoding, cryptarithmetic problems and input-output reasoning.

Campus Recruitment Papers
Discussion of previous year question papers of all major recruiters of Amrita Vishwa Vidyapeetham.

VERBAL SKILLS

Vocabulary
Create an awareness of using refined language through idioms and phrasal verbs.

Reasoning Skills
Facilitate the student to tap his reasoning skills through syllogisms, and critical reasoning arguments.

Reading Comprehension (Advanced)

Enlighten students on the different strategies involved in tackling reading comprehension questions.

Public Speaking Skills

Empower students to overcome glossophobia and speak effectively and confidently before an audience.

Writing Skills

Introduce formal written communication and keep the students informed about the etiquettes of email writing.

Versant Model Test

REFERENCE BOOKS

3. The Hard Truth about Soft Skills, by Amazon Publication.
4. Verbal Skills Activity Book, CIR.
5. Nova’s GRE Prep Course, Jeff Kolby, Scott Thornburg & Kathleen Pierce
6. The BBC and British Council online resources
7. Owl Purdue University online teaching resources
8. www.thegrammarbook.com online teaching resources
9. www.englishpage.com online teaching resources and other useful websites
11. Quantitative Aptitude for All Competitive Examinations, Abhijit Guha.
13. How to Prepare for Data Interpretation for the CAT, Arun Sharma.
15. Quantitative Aptitude for Competitive Examinations, R S Aggarwal.
VALUE ADDED AND SKILL BASED ELECTIVES
SCOPE: Sanskrit is one of the most ancient and well-preserved Indo-Aryan language. Studying Sanskrit can deepen the linguistic concepts, including phonetics, morphology, syntax, and semantics. It can also help to grasp the intricacies of language evolution and the historical development of Indo-European languages. Sanskrit is renowned for its vast literary corpus, which includes ancient epics, philosophical treatises, plays, poetry, and religious scriptures. Studying Sanskrit helps to gain knowledge about classical Sanskrit literature and develop skills in analyzing and interpreting these texts. This includes understanding literary themes, symbolism, and cultural context.

Many philosophical and religious texts in India, such as the Vedas, Upanishads, Bhagavad Gita, and various commentaries, are written in Sanskrit. Sanskrit is deeply intertwined with Indian culture and history. The knowledge can be particularly useful in fields like anthropology, and historical research. Sanskrit serves as a bridge between various Indian languages and can help to explore linguistic and cultural connections within the Indian subcontinent. The course covers the alphabet, basic grammar, text reading and writing and communication skills in Sanskrit.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, students shall be able to

KNOWLEDGE:

K1: Identify the alphabets
K2: Interpret the basics of grammar usage
K3: Use Sanskrit language to read and write
K4: Apply Sanskrit language to communicate each other
K5: Recognize Sanskrit script and pronunciation
K6: Evaluate the use of Sanskrit

SKILL

S1: Choose appropriate vocabulary and grammar to communicate effectively
S2: Assess complex Sanskrit sentences
S3: Justify the use of Sanskrit numericals.
S4: Translate words and sentences to Sanskrit
S5: Recite simple versus
S6: Acquire the capability of communication in Sanskrit
ATTITUDE:

A1: Accept a positive attitude towards the challenges and complexities of Sanskrit grammar and vocabulary
A2: Participate willingly in language practice activities such as speaking and reciting verses
A3: Cooperate in group discussions of speaking in Sanskrit
A4: Assist in activities to study Sanskrit
A5: Praise the language for its cultural and historical significance
A6: Create an awareness of Sanskrit language among others

COURSE CONTENTS

UNIT I 6 Hours

Vowels (Swaraaksharaani) Consonants (Vyanjanaaksharaani), Ucharanam (Pronunciation), Conversation (Sambhashanam), Mama Naama, Bhavatah Naama, Bhavatyah Naama, Numbers (Sankhyaa)- Ekam-Dasha(1-10), Names of things (Vasthoonaam Naamaani) 10 (Show the models of things/ original/ picture and repeat 3,4 times) Eg- Chashakah, Petikaa, Lekhanee, Phalam etc (2 hrs)

Joint Alphabets (Samyuka Aksharaani) Uchaaranam (Pronunciation), Conversation (Sambhashanam) Saha, Saa, Tat (Using Teaching Aids), Asthi, Nasthi, Numbers (Sankhya) Time (Samayah), 5 o’clock, 6,7,8,9,10,11,12,1,2,3,4), Verbs (Kriya Padaani) 10, Gachati, Aagachati, Upavishati, Uthishtati, Padati, Likhtati, Khaadati, Pibati, Pashyati, Vadati, Names of things (Vasthoonaam Naamaani) New 10 things, Vasthu Naama Kreedaa – Vocabulary building game (2 hrs)

Varnamalaa- (Ka, kaa, ki, kee………..) Joint Alphabets (Samyuka Aksharaani) More exercises, Eshah, Eshaa, Etat – (Using Teaching Aids), Numbers – 11-20, Atra, Tatra, Anyatra, Sarvatra, Kutra, Time - 5:15, 5:30, 5:45 (Using Teaching Aid), Verbs (Kriya Padaani), Gachati, Aagachati …..Gachaami, Aagachaami, Upavishaami, Uthishtaami, Padaami, Likhaami, Khaadami, Pibaami, Vadaami, Wishes- Suprabhatam, Su madhyahnam, Subhasaayam, Subharatrihi, Dhanyavaadah, Swaagatham, Kshamyataam, Chintaa maastu, Punar milaamah. (2 hrs)

UNIT II 6 Hours

Addressing- Shreeman, Mahaashaye , Job (Vrithi Naamani), Chaatrah, Chaatraa, Vaidyah, Vaidyaa, Adhyaapakah, adhyaapikaa, Aarakshakah, Aarakshikaa, Chaalakah, Chaalikaa

Subhasitam 1, Paropakaaraaya Vahanti Nadyah (2 hrs)

Word Splitting,Word Joining,Naama Padaani (Noun)- Kriyapadaani (Verb) – Vaakya Nirmaaanam- Sentence Formation (Baalakah Padati),Naama Padaani (Details of Noun),

Linga bhedah (Pullingah, Stree lingah, Napumsaka Lingah) (Masculine Gender, Feminine Gender, Neuter Gender) ,Examples,Relatives- Janakah, Jananee, Sahodarah, Sahodaree, Agrajah, Agrajaa, Anujah, Anujaa, Maatulah,Vachanam- Eka vachanam, Dwi Vachanam,
Bahu Vachanam (Singular, Dual, Plural forms of Noun), Chaatu slokak- (Riddle), Asthi Nasthi Siro Nasthi, Kathaa (Small story) – Kaakasya Pipaasaa (2 hrs)

Sentence Formation more examples, Gender separation of Non-living objects, Avayavaanaam Naamaani (Names of organs), Samskrita Parichayah- (Vyakaranam, Sahityam, Vedantam, Nyayam), Subhashitam- Ayam Nijah Paro vetti (2 hrs)

UNIT III 6 Hours

Mrigaanaam Pakshinaam Naamaani (Animals and Birds), Kriya padam- Verb, Vachanam – (Singular, Dual, plural of Verbs), Purushah (First, second and third persons of Verbs and Subject), Subhashitam- Sathyam Maataa,, Samkrita Parichayah- Drishyam-Shravyam, Padyam- Gadyam- Champa, Story- Budhimaan shishyah, Chaatu shlokak, Pushpaanaam Namani (Names of flowers) (2 hrs)

Sentences in Eka vachanam – with more examples, Kaala parichaya- Introduction of Tenses in Sanskrit, Chaatu sloka, Subhashitam, Kathaa, Vibhakti parichaya- Dwiteeyaa (2nd case) (2 hrs)

Sentences in plural- with more examples, Mottos- 10 important institution’s mottos in Sanskrit, Eg: Shrdhavaan labhate jnaanam – Amrita, Vibhakti Parichaya – Triteeyaa (3rd case), Bhasha Kreeda- Language game (2 hrs)

UNIT IV 6 Hours

Sentence formation with Future tense and Past tense, Reciting – Verb forms in Present tense

Sloka from Bhagavad Gita, Vibhakti Parichaya- Chaturthee (4th case), Bhasha Kreedaa- Language game, Samskrita Paricahaya- Poets in Sanskrit, Kathaa- Story (2 hrs)

Situational Conversation, Shloka from Bhagavad Gita, Vibhakti Parichya – Panchamee (5th case), Kathaa- Story (2 hrs)

Sentence formation, Vibhakti Parichayah – (6th case), Shloka from Bhagavad Gita, Kathaa- Story, Situational Conversation, Upasargah – Prefix (2 hrs)

UNIT V 6 Hours

Introduction on Sandhi, Samasa and Pratyaya, Vibhakti Parichaya (7th case), Introduction of Rama Sabda (24 forms with meaning), Reciting Rama Sabda, Reciting Verb in Present Tense (9 forms), Shloka from Bhagavad Gita, Situational Conversation (2 hrs)

Shloka from Bhagavad Gita, Reciting Rama Sabda, Reciting Verb in Present Tense (9 forms), Kartari- Karmani Introduction (2 hrs)
Situational Conversation activity of Students, Shloka chanting by Students, Rama sabda recitation, Verb Recitation, Sankhyaa, Samayah (2 hrs)

TEXT BOOKS:

REFERENCE BOOKS:

1. Sanskrit through correspondence (English) – By Samskrita Bharathi Bangalore, 2018
2. Samskritam Thapaaliloode (Malayalam)- By Viswa Samskrita Prathishtanam, Kodungallur, 2016
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hindi (T)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2</td>
<td>I-IV</td>
<td>BPHUM02</td>
</tr>
</tbody>
</table>

SCOPE: According to Article 343 of the Indian Constitution, Hindi in Devanagari script is the official language of the union. This course enables the students with effective speaking and listening skills in Hindi. It makes them realize the communication potential of the Hindi language. It trains them to use the Hindi language effectively to face interviews, group discussions, and public speaking. The course helps students to understand the different stages and relevance of Hindi literature.

This course opens pathways for careers in a variety of fields such as media, teaching, advertising and publishing, professional writing as well as studies in Hindi, Law, or Communication. Overall it stands at a higher position for development in any field where language is a predominant factor.

COURSE LEARNING OUTCOMES

Upon completion of the course students shall be able to;

KNOWLEDGE

K1: Define the fundamentals of language and its usage in different situations.

K2: Describe the structure of the language.

K3: Identify the roots of Hindi Literature and its perspective and methods.

K4: Explain the Philosophical methods of Hindi Literature.

K6: Categorize the basis of the classification in Hindi Literature.

K7: Apply wide knowledge which allows them to be effective in their interpretations.

SKILL

S1: Develop verbal and non–verbal skills in communication

S2: Apply translation skills from Hindi to English and vice versa.

S3: Develop their writing and reading skills in Hindi

S4: Perform skillfully speaking and writing the grammatically correct language.

S5: Create intellectual ideas and makes them enrich their career

S6: Participate in group discussions to promote language skills.
ATTITUDE

A1: Appreciate the importance of Hindi in human life.
A2: Embrace an increased vision regarding literary value.
A3: Embrace the possibility of developing an interest in Hindi Literature.
A4: Recognize Hindi literary works based upon the traditional values of India and its cultures.
A5: Cultivate the knowledge of the environment and social responsibilities.

UNIT-1 5 Hours
Introduction to Hindi Language, other Indian Languages, Official Language, link Language Technical Terminology.(2hrs)
Hindi alphabet: Paribhasha Aur Bhed.
Shabda: Paribhasha Aur Bhed, Roopanther ki Drishti se(1hr)
Sangya - Paribhasha Aur Bhed, Sangya ke Roopanther-ling, vachan, karak (1hr)
Sarvanaam- Paribhasha Aur Bhed.(1hr)

UNIT –II 5 Hours
Visheshan- Paribhasha Aur Bhed.
special usage of adverbs, changing voice and conjunctions in sentences. (2hrs)
Kriya- Paribhasha Aur Bhed, rupanther ki drushti se-kaal(2hr)
Padhparichay(1hr)

UNIT –III 7 Hours
Common errors and error corrections in Parts of Speech –with emphasis on the use of pronouns, Adjective, and verbs in different tenses –Gender & number (2hrs)
Conversations, Interviews, and Short speeches.(2hr)
Letter writing –Paribhasha Aur Bhed, Avedanpatra (request letter) & Practice(1hrs)
Translation-Paribhasa Aur Bhed, English to Hindi(2hrs)

UNIT -IV 6 Hours
Film review (1hr)
Audio –Visual-Media in Hindi (1hr)
Movies appreciation and evaluation. (1hrs)
News reading and presentations on Radio and TV channels in Hindi (2hrs)
Samvaadhlekhan(1hr)

UNIT V 7 Hours
Karmaveer (Poem) - Ayodhya Singh Upadhyay ‘Harioudh’ (1hr)
Manushyata (Poem) – Maithili Sharan Gupta (2hrs)
Mamata (Story) – Jayshankar Prasad (2hrs)
Kafan (Story) – Premchand(2hrs)
TEXT BOOKS:

2. Poetry :KavyaGanga-Ed: Chandrashekar –Suman Prakashan; Mysore, kavya Sargam-Ed; Dr.Santhosh Kumar Chaturvedi-Lokbharathi Prakashan

REFERENCE BOOKS:

Dr.Santhosh Kumar Chaturvedi-LokbharathiPrakashan

*Latest edition of the textbooks & reference books can be referred.
SCOPE: The course focuses generally on building basic language skills in Malayalam language as it is the principal language of communication the state. It covers the unique script and alphabet of language and on learning the alphabet and pronunciation. The course discusses the common words, phrases and expressions in Malayalam language. It empathises the importance of reading and formation of various parts of speech.

It also discusses Malayalam literature and culture which are the integral parts of studying the language. It focuses on translating texts from Malayalam to other languages and vice versa. It also deals with conversations in Malayalam to express their thoughts and to ask questions and respond to others. It also focuses on listening skills in various contexts and to express ideas. The course provides a solid foundation for further learning and development in the Malayalam language.

COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Outline the depth and necessity to learn the Malayalam
K2: Read the alphabets in Malayalam
K3: List few poems in Malayalam
K4: Explain sarvanamam and kriyas
K5: Discuss simple Malayalam poems
K6: Describe stories in Malayalam.

SKILL

S1: Write alphabets in Malayalam
S2: Translate English words and sentences to Malayalam
S3: Construct simple words and sentences in Malayalam
S4: Develop parts of speech and error free sentences
S5: Recite simple poems
S6: Speak in Malayalam
ATTITUDE
A1: Appreciate the richness of Malayalam language
A2: Cooperate in group discussions of speaking Malayalam
A3: Assist in activities to study Malayalam for effective communication
A4: Embrace moral values like kindness, selfless service etc.
A5: Create an awareness of gratitude as a social animal.
A6: Praise the language beyond its limits, the depth and expansion of conversation

COURSE CONTENTS:

UNIT I (6 Hours)
Malayalam Script (51 letters)
Vowels (Swarams) and consonants (Vyanjanams)- (1 hr)
Conjunct letters in Malayalam (1 hr)
Word formation in Malayalam (2 hrs)
Make sentences in Malayalam (2 hrs)

UNIT II (4 Hours)
Pronouns (Sarvanamams) (1 hr)
Genders (Ligams) (1 hr)
Number (Sanghyas) (1 hr)
Verb (Kriya) (1 hr)

UNIT III (6 Hours)
Basic sentences (2 hrs)
Paragraph writing. (2 hrs)
Translation of basic sentences. (2 hrs)

UNIT IV (6 Hours)
Reading Poems(2 hrs)
Telling Stories (2 hrs)
Acting small Skits etc. (2 hrs)

UNIT V (8 Hours)
Error-free Malayalam:
Language (2 hrs)
Clarity of expression (3 hrs)
Punctuation-Thettillatha Malayalam – Writing-a. Expansion of ideas (3 hrs)
Text books
1. Prof. Panmana Ramachandran Nair. Nalla basha, 5th edn. DC books. 2022

References
4. SREEKANTESWARAM G. PADMANABHA PILLAI. SABDHATHARAVALI. 6th edn. DC books. 2020

*Latest edition of the text books & reference books can be referred.
SCOPE: This course is designed to understand and apply the concepts of psychology and mental health to personal and professional life. It can be helpful to acquire the basic knowledge of behavior and effective living and to improve life skills. It can create an awareness of the factors that can deteriorate mental health and well-being.

The course intends to discuss the need and methods for stress coping and subjective well-being. It can be helpful to understand the concepts of learning, memory, attention, and perception. It also throws light on emotional intelligence and effective interpersonal communication. The course also focuses on the strategies to overcome health-compromising behaviors, along with the techniques and methods for handling the adversities of life. It can give an overview of the concepts of mental health, and common mental health conditions, along with the strategies of help and care for mental health issues, including mental health issues in the workplace. The course can be helpful to appreciate psychological management for healthy relationships and productive interactions.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the students shall be able to;

KNOWLEDGE

K1: Outline the concepts of psychology and fundamental processes underlying human behavior.
K2: Identify the factors that can deteriorate mental health and well-being.
K3: Recognize the warning signs of poor mental health.
K4: Discuss the need and methods for stress coping and subjective well-being.
K5: Explain the etiology, clinical manifestation, complications, diagnosis and management of mental disorders.
K6: Illustrate the strategies of help and care for mental health issues in workplace.

SKILL

S1: Demonstrate the concepts of learning, memory, attention and perception in day to day life.
S2: Analyze the aspects of emotional intelligence.
S3: Recommend the relevance and benefits of counseling.
S4: Develop effective interpersonal communication.
S5: Apply strategies to overcome health compromising behaviors.
S6: Propose the techniques and methods for handling the adversities of life.
ATTITUDE

A1: Accept the impact of psychology and mental health in the quality of life.
A2: Appreciate healthy relationships and empathetic interactions.
A3: Support people with mental health conditions.
A4: Follow the therapeutic approaches for the management of mental health conditions.
A5: Participate effectively in the process of communication by active listening.
A6: Assist people to overcome crisis situations.

COURSE CONTENTS

UNIT 1

Introduction to Psychology
Definition, scope & major schools of psychology (1hr)
Learning & Memory (1hr)
Attention & Perception (1hr)
Parenting & Peer relationship (1hr)

UNIT II

Stress Coping and Subjective Well-being
Nature and sources of stress, Types of stress – Pressure, Conflicts, and Frustration (1hr)
Stress and Health, Coping with Stress, Coping Strategies – Functional and Dysfunctional (1hr)
Well-being – Definition and determinants, Psychosocial impact and consequences of chronic illness and consequences (1hr)

UNIT III

Workplace mental health
Mental health issues in workplace (1hr)
Strategies of help and care (1hr)
Health compromising behaviors (1hr)

UNIT IV

Emotional Intelligence
Introduction & Components of emotional intelligence (1hr)
Emotional intelligence at workplace (1hr)

UNIT V

Mental Health and mental illness
Overview of mental health - concepts, characteristics of mentally healthy person,
Warning signs of poor mental health (1hr)
Psychosocial impact and consequences of mental illness diagnosis and consequences (1hr)

UNIT VI

Communication
Process of communication, Listening (1hr)
Nonverbal Communication, Effective interpersonal communication (1hr)
UNIT VI
Anxiety 2 Hours
Anxiety-introduction (1hr)
Anxiety-Management (1hr)

UNIT VII
Basics of Solution focused brief therapy 1 Hour

UNIT VIII
Counseling 2 Hours
Principles, Effective counseling, Types of counseling (1hr)
Characteristics of counselor, counseling terminally ill, Counseling the relatives, Counseling in rehabilitation practice (1hr)

UNIT IX
Addictions 2 Hours-
Substance addiction (1 hr)
Other behavioral addiction (1 hr)

UNIT X
Introduction to Psychiatric illnesses 4 Hours
Depression (1hr)
Schizophrenia (1hr)
Bipolar disorder (1hr)
Personality disorders (1hr)

UNIT XI 1 Hour
Crisis situation
Suicide, Reaction to traumatic events (1hr)

UNIT XII
Psychological management (1hr) 1 Hour

UNIT XIII
Psychopharmacology (1hr) 1 Hour

Text Books

Reference Books
SCOPE: As a nation, we are moving forward to achieve Global Goals or Sustainable Development Goals (SDG) by 2030. Gender Equality is the fifth goal, which is built on the principle of “leaving no one behind”. The civic responsibility of each and every citizen is to take part in the development process of our country. Gender inequality and gender discrimination become great hindrances in the nation-building process.

This course introduces the basic concepts related to gender, gender disparity, contemporary issues related to gender, and initiatives of the state to bring about gender equality. Increased awareness of gender will empower each one as a gender-sensitive individual. This course will help individuals to safeguard themselves from gender atrocities, at the same time will enable them to protect and consider every individual irrespective of their gender.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Define the Theoretical Perspectives on Gender
K2: Review the fluidity of gender as a concept
K3: Explain how the focus of sociology is shifting from macro to micro-lived experiences.
K4: Relate the basic concepts of gender and gender equality and explain gender disparities and issues related to gender inequality.
K5: Illustrate the state initiatives to reduce gender inequality.
K6: Explain the knowledge about patriarchy/matriarchy and its deep-rooted, invisible ramifications.

SKILL

S1: Explain identity politics featuring gender.
S2: Relate the concept of gender equality to sociology and make it more inclusive
S3: Apply the theoretical perspectives of gender to everyday experiences
S4: Construct a comparative understanding of gendered relations across the globe
S5: Compare the reflections on the Indian context of gender and its policy formulation
S6: Develop skills to unravel the undercurrents in the social movements revolving around gender across space and time.
ATTITUDE
A1: Accept the Consciousness about social reality characterized by marginalization and oppression
A2: Accept queer (LGBT) people and legal inclusion of Sexual Minorities
A3: Appreciate the responsibility to organize gender sensitization programs.
A4: Endorse a micro and subjective dimension in the discipline
A5: Radiate a feeling of empathetic understanding of oppression toward queer
A6: Participate in social movements questioning gender inequality.

UNIT I 4 Hours
Gender:
Introduction:
Concepts: Sex and Gender, Gender Identity, Gender Equality, and Difference, Gender Roles (2hrs)
Gender Socialization, Gender Stereotyping, Gender Discrimination, Patriarchy, Feminism, Sexism
Gender Order: Masculinities, Femininities, LGBTQIA (2 hrs)

UNIT II 10 Hours
Theories of Gender:
Liberal Feminism- Betty Friedan, Marxist feminism- Rosa Luxemburg (2hrs)
Radical Feminism- Shulamith Firestone (2hrs)
Psycho-analytical feminism- Nancy Chodorow, Julia Kristeva (1 hr)
Eco-feminism- Vandana Shiva (1hr)
Postmodern Feminism- Judith Butter (1hr)
Masculinities- Raewyn Connell (1hr)
Queer Theory (2hrs)

UNIT III 04 Hours
Gender and Social Institutions:
Gender and Work (Production v/s Reproduction, Public v/s Private, Feminization of poverty (1 hr)
Gender in Marriage and Family (1hr)
Gender in Education (1hr)
Gender Disparity in Health Care (1hr)

UNIT IV 05 Hours
Gender-specific crimes:
Female foeticide, Female infanticide, Domestic Violence (2hrs)
Sexual Harassment, Rape, Marital rape, Intimate partner violence, Trafficking, Prostitution (2hrs)
Gender portrayal in Media: Commoditization, Media violence (1 hr)

UNIT V 05 Hours

International, National, and State Response to Gender Discrimination:

International Level: International Convention on Elimination of all forms of Discrimination against Women (CEDAW), MDG3 (2hrs)

National and State Level: National Human Rights Commission, Women’s Commission, All Women's Police Stations, Vigilance Cell, Legal Aid− Cells, Women’s Cell, Family Courts, Childline, Jagrata Samithi, Equal opportunity Cell, Service Providers, and Helplines for Women and Children, State Policy for Transgender in Kerala 2005 (3hrs)

UNIT VI 02 Hours

Case Study, Video clip presentation (1 hr)

Gender sensitivity training(1hr)

TEXTBOOKS:

REFERENCE BOOKS:

*Latest edition of the text books & reference books can be referred.
<table>
<thead>
<tr>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs.</th>
<th>Credits</th>
<th>Semester</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health And Life Style (T)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2</td>
<td>I-IV</td>
<td>BPHUM06</td>
</tr>
</tbody>
</table>

SCOPE: The course aims at creating consciousness among the students towards health, fitness and wellness. Students will be learning the exercises, yogasanas to keep them fit, they will learn about special diets for various indications.

This can help in developing and maintaining a healthy lifestyle by adapting good lifestyle, good food habits, practicing yoga and exercise, right posture and realizing the impact of alcoholism, smoking and understanding the diseases caused by wrong lifestyle, habits and bad emotions and able to help the diseased with first aid.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, students shall be able to;

KNOWLEDGE

K1: Describe dimensions of health and concepts of wellness.
K2: Identify the major physical and psychological health concerns of our nation.
K3: Explain how personal decisions and behaviors affect health and impact the most common lifestyle diseases.
K4: Learn basic principles of nutrition and ways to obtain/maintain a healthy body composition.
K5: Describe and discuss the health related components of physical fitness and techniques for developing a personal exercise program.
K6: Identify healthy ways to cope with stress and describe the short and long term effects of alcohol, tobacco and other substances of abuse.

SKILL

S1: Practice the right lifestyle habits
S2: Prepare therapeutic diets for diseases/disorders
S3: Demonstrate exercises for muscle strength, cardiac endurance
S4: Apply the first aid techniques at times of need
S5: Demonstrate the right posture and resting pattern
S6: Determine your BMI, skin fold measurement and pulse rate

ATTITUDE

A1: Appreciate the best practices of your team and family members
A2: Contribute the importance of good habits to school and college students
A3: Realise the significance of home made food and fresh and raw food recipies
A4: Empathetic to patients and team members
A5: Take responsibility to prevent ill health
A6: Being a role model in adapting right life style, right food habits, right postures, practicing yogasanasto spread awareness

COURSE CONTENTS

UNIT I 5 Hours
Concept of Physical Education and Health (1 hr)
Definition, Aims and Objectives of Physical Education
Importance and Scope of Physical Education
Modern concept of Health, Physical fitness and Wellness, Health is wealth; Role of lifestyle habits on health (1 hr)
Importance of adolescence; Stages, Characteristics and changes during adolescence (1 hr)
Nutritional needs during adolescence why healthy lifestyle is important for adolescence (1 hr)
Eating Habits – eating disorders, skipping breakfast, junk food consumption. Therapeutic Diets (1 hr)

UNIT II 4 Hours
Components of Physical Fitness
Physical fitness components - Speed, Strength, Endurance, Flexibility and Coordinative Abilities (1 hr)
Types of Physical Fitness (2 hr)
Health related Physical Fitness
Performance Related Physical Fitness
Cosmetic fitness
Fitness Balance (1 hr)

UNIT III 3 Hours
Principles of Exercise Programme
Activities for developing Physical Fitness Components (1 hr)
Exercise and Heart rate Zones (1 hr)
Principles of First Aid (1 hr)

UNIT IV 4 Hours
Nutrition Balance, Fluid intake (1 hr)
Nutrition related problems; lifestyle related problems (1 hr)
Role of physical activity; resting pattern and postures (1 hr)
Personal habits – alcoholism, and other tobacco products, electronic addiction etc (1 hr)
Ethnic Foods

UNIT V 6 Hours
Yoga and Stress Management
Asanas and its effects:-
Padmasana, Halasana, Bhujangasana (1 hr)
Shalabhasana, Dhanurasana, Shavasana (1 hr)
Vajrasana, Chakrasana, Trikonasana, Padahasthasana (1 hr)
Postural Deformities – Corrective measures (2 hrs)
Stress Management and Relaxation Techniques (1 hr)

UNIT VI 4 Hours
Need for a Positive Life Style Change
Peer pressure & procrastination (1 hr)
Stress, depression (1 hr)
Suicidal tendency (1 hr)
Mini project review and viva, Whole portions revision.
Cooking without Fire or Wire (1 hr)
Healthy Snacks

UNIT VII 4 Hours
Health related Physical Fitness and Assessment (1 hr)
Body mass Index/ Skin fold Measurement, BMR, Pulse Rate, Blood Pressure-(2 hrs)
Health Related Physical Fitness Test. (1 hr)

TEXT BOOKS:

ADDITIONAL READING MATERIALS
1. AAPHERD. “Health Related Physical Fitness Test Manual”. Published by Association drive Reston Virginia. 1980
2. ACSM Fitness Book, Leisure Press Campaign, Illions, , Leisure Press, Canada
5. B.C.Rai Health Education and Hygiene Published by Prakashan Kendra, Lucknow
7. California: Mayfield Publishing Company
10. Les Snowdan., Maggie Humphrey’s Fitness walking, Maggie Humphery Orient

*Latest edition of the text books & reference books can be referred.
Course Title	**L**	**T**	**P**	**Total Hrs.**	**Credits**	**Semester**	**Course Code**
Philosophy (T) | 2 | 0 | 0 | 30 | 2 | I-IV | BPHUM07

SCOPE: This course offers a comprehensive introduction to the rich philosophical traditions of India and the West, specifically focusing on their practical applications in everyday life. In the Indian philosophy component, students will delve into the practical aspects of self-knowledge and the art of living. They will explore profound teachings from Vedānta, Bhagavad Gita, Buddha Philosophy, and Yoga Philosophy. Additionally, the course will examine the methodological approaches of Western philosophy through the study of influential figures such as Socrates, Plato, and Aristotle.

Throughout the course, students will cultivate critical thinking skills and develop a creative and problem-solving mindset by exploring diverse perspectives. These invaluable abilities will empower them to approach problems impartially and find effective solutions. Furthermore, students will be encouraged to exhibit appropriate behaviour, demonstrate independent thinking, offer constructive input, and actively engage in group discussions. This active participation will foster the development of positive character traits, resilience, and a strong moral foundation rooted in self-knowledge.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, students shall be able to;

KNOWLEDGE

K1: Discuss different schools of Indian philosophy
K2: Describe Western Philosophy
K3: Explain the concepts of right, wrong, good and bad
K4: Understand basic philosophical issues regarding the Self, Society and God.
K5: Able to differentiate the valid and invalid arguments.
K6: Summarize difficult ideas and concepts.

SKILL

S1: Develop critical thinking skills.
S2: Interpret philosophical texts
S3: Learn on your own
S4: Articulate views on philosophical topics
S5: Engage critically and constructively with moral problems and decisions
S6: Assess reality from different perspectives, with different people and in different ways
ATTITUDE
A1: Maintain classroom decorum.
A2: Keep your attention in class.
A3: Respect all cultures.
A4: Involve actively in class discussions.
A5: Show compassion for our fellow beings.
A6: Create a good argument.

COURSE CONTENTS

UNIT I: 10 Hours
Indian Philosophy-1
Introduction to Indian Philosophy (1 hr)
Schools of Indian Philosophy (1 hr)
Common Characters of the Indian System (1 hr)
Vedānta Philosophy: Origin and Development of Vedānta (1 hr)
Psychology of Upanishads (1 hr)
Swami Vivekananda: Proofs for the existence of God, Universal Religion (3 hrs)
Nature of Self by Raman Maharshi (1 hr)
Self Inquiry by Raman Maharshi (1 hr)

UNIT II 9 Hours
Indian Philosophy-2
Practical Teachings of Bhagavad Gita (2 hrs)
Bhakti-Yoga, Jñāna-Yoga and Karma-Yoga (1 hr)
Niṣkāma-Karma-Yoga (1 hr)
The Eightfold Means of Yoga (1 hr)
Introduction of Four Noble Truths (1 hr)
Cause of Suffering: The Chain of Twelve Links (1 hr)
The Problem of Freedom by J. Krishnamurti (1 hr)
The Ending of Fear by J. Krishnamurti (1 hr)

UNIT III 4 Hours
Western Philosophy-1
Chief Characteristics of Western Philosophy (1 hr)
Socrates, Plato and Aristotle: Introduction to Socrates and his method (1 hr)
Plato’s Theory of Knowledge (1 hr)
Aristotle: Theory of Causation (1 hr)

UNIT IV 7 Hours
Western Philosophy-2
Rationalism and Descartes’s Innate Idea (1 hr)
Method of Doubt (1 hr)
Lock’s Refutation of Innate Idea (1 hr)
Introduction of Empiricism (1 hr)
Kant’s Epistemology and His Transcendental Method (1 hr)
Reconciliation of Rationalism and Empiricism (1 hr)
Mill: The Method of Agreement and The Method of Difference (1 hr)

TEXT BOOKS:

4. J. Krishnamurti. Think on These Things, Published by Krishnamurti Foundation India, Vasant Vihar, Chennai. (latest edition)
5. J. Krishnamurti. Freedom From Known, Published by Krishnamurti Foundation India, Vasant Vihar, Chennai. (latest edition)

REFERENCE BOOKS:

*Latest edition of the text books & reference books can be referred.
SCOPE: The objective is to help the student to understand the basic economic parameters that interact with each other so that an economy may function effectively and efficiently. The focus is on making the various theoretical concepts clear and intelligible to a student. It provides the ability to recognize when change is appropriate, to adapt to change as it occurs, and to take the lead in creating change as the country’s economic environment changes.

This also contributes to a better understanding of the demand and supply conditions and assesses the position of an organization. Overall, the scope of this subject encompasses the understanding of complex markets but comes away with strong analytical and problem-solving skills, as well as the business acumen necessary to succeed in the professional world.

COURSE LEARNING OUTCOMES

Upon successful completion of the course, the student shall be able to;

KNOWLEDGE

K1: Explain the significance and fundamentals of economics.

K2: Describe the various concepts of economics that can be applied in the internal and external decisions to be made by business firms.

K3: Identify the demand and supply conditions and assess the position of a company.

K4: Apply the basic theories of economics in critical thinking and problem-solving.

K5: Conclude decisions based on demand and supply.

K6: Design competition strategies, including costing, pricing, product differentiation, and market environment according to the nature of products and the structures of the markets.

SKILL

S1: Develop the fundamental and technical concepts of economics.

S2: Demonstrate an awareness of their role in the global economic environment.

S3: Apply decisions wisely using cost-benefit analysis.

S4: Develop the ability to recognize and adapt to change, and take the lead in creating change.

S5: Analyze the links between production costs and the economic models of supply.

S6: Analyze how different degrees of competition in a market affect pricing and output.

S7: Apply economic reasoning to individual and firm behavior.
ATTITUDE

A1: Develop entrepreneurial skills in students.
A2: Foster a sense of urgency to make better decisions and formulate the right plans.
A3: Embrace skills needed to understand complex markets, as well as the business acumen necessary to succeed in the professional world.
A4: Construct ideas to succeed in an ever-changing world, which includes businesses, market flow, opportunities, and threats.
A5: Develop knowledge to evaluate alternatives and make better choices.
A6: Appreciate the impact of economics on long-term success and lifetime earnings

COURSE CONTENTS

UNIT I 7 Hours
Introduction to Economics:
The problems of wants, scarcity, and choice - Difference between microeconomics and macroeconomics.(2 hrs)
Importance and limitations of Microeconomics and Macroeconomics.(1 hr)
Basic problems of Economics: What to Produce, How to Produce, For Whom to Produce, Level of Resource Use, and Flexibility.(2 hrs)
Economic systems –Capitalism–Command Economy–Mixed Economy.(2 hrs)

UNIT II 7 Hours
Demand and Supply Analysis:
Concept of demand-Demand schedule and demand curve–Law of demand -factors influencing demand. (3 hrs)
The elasticity of demand. Supply: Concept, Supply schedule, and supply curve–Law of supply-Factors influencing supply.(4 hrs)

UNIT III 6 Hours
Production, Cost and Revenue Analysis: Meaning of production:
Economies of scale.(1 hr)
UNIT IV

Theory of Markets
Meaning and types of markets–Main features of Competitive, Monopoly, Monopolistic, and Oligopoly markets.(3 hrs)
Price discrimination: Meaning and Types.(2 hrs)

UNIT V

Macroeconomics:
National income analysis: Meaning, Concepts, and Concept of full employment–Types of unemployment.(3 hrs)
Inflation: Meaning, Types, and Control of Inflation: Monetary and Fiscal Policies. (2 hrs)

TEXTBOOKS:
1. Varshney & Maheswari; Managerial Economics, Sultan Chand & Sons., 2009.

REFERENCE BOOKS:

*Latest edition of the text books & reference books can be referred.